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Foreword

The school “Poisson Geometry and Related Topics” was held at the Hiyoshi
Campus of Keio Univeristy in Yokohama from May 31st to June 2nd, 2006 and
was followed by the conference “Poisson 2006: Poisson Geometry in Mathematics
and Physics” held at the National Olympics Memorial Youth Center in Tokyo
from June 5 through 9, 2006.

Mini-courses were given by the main lecturers: E. Meinrenken, T. Z. Nguyen,
Y. Voglaire and A. Weinstein and a final long talk by M. Kontsevich. The school
was also an opportunity for younger participants to present their work in a short
talk or during the poster session.

Further information about these meetings, as well as Poisson 2008 to be held
in 2008 at EPFL in Lausanne, may be found on the Poisson Geometry Home
Page at poissongeometry.org, which links to the videos of all the talks of the
conference Poisson 2006 and principal lectures of the school.

This volume of Travaux Mathématiques consists of contributions from the
speakers who have given a short talk and participants who have presented a poster
at the school. The contributions by the principal lecturers at the school and the
invited speakers at the conference Poisson 2006 will be published in a separate
volume in the Contemporary Mathematics series of the A.M.S. at the beginning
of 2008.

Giuseppe Dito Jiang-Hua Lu Yoshiaki Maeda Alan Weinstein
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69. Schaffhauser, Florent, Keio University, Japan

6



70. Schapira, Pierre, Université de Paris 6, France
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72. Signori, Daniele, Pennsylvania State University, USA

73. Stefanini, Luca, Universität Zürich, Switzerland
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The holonomy of a singular foliation 1 2 3

by Iakovos Androulidakis

Abstract

We give an overview of [1], in collaboration with G. Skandalis, where
we construct the holonomy groupoid and the C∗-algebras associated with
any singular foliation (in the sense of Stefan and Sussmann).

1 Introduction

Foliations arise naturally in several situations, including Poisson geometry (every
Poisson manifold is endowed with a canonical symplectic foliation). The relation
of foliations with groupoids is well known: The orbits of a Lie groupoid define a
foliation; on the other hand, to a regular foliation there corresponds its holonomy
groupoid constructed by Ehressmann [8] and Winkelnkemper [18]. (For an account
of this see [10].) In the regular case the crucial properties of the holonomy groupoid
are

• smoothness, namely in the regular case the holonomy groupoid is a Lie
groupoid

• minimality, namely every other Lie groupoid which defines the same foliation
maps onto the holonomy groupoid.

The holonomy groupoid is the first step towards a number of different impor-
tant results:

• Due to minimality it records the necessary information for the space of
leaves of the foliation in hand. This space presents considerable topological
pathology, and A. Connes showed that it can be replaced by a certain C∗-
algebra constructed from the holonomy groupoid.

• Using this C∗-algebra, A. Connes and G. Skandalis in [4] developed an index
theory for foliations.

1Received: December 5, 2006
2Keywords: singular foliation, holonomy groupoid, C∗-algebra
3AMS Subject classification. Primary: 53B34. Secondary: 22A22, 53C29, 58C12
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• By extending the construction of the C∗-algebra to an arbitrary Lie groupoid
we get a formal deformation quantization for the Poisson structure of the
dual of an integrable Lie algebroid.

• The C∗-algebra above corresponds to a family of pseudodifferential operators
along the s-fibers of the holonomy groupoid, and these operators play an
important role in both index theory and deformation quantization.

Attempts to generalize the holonomy groupoid in the singular case were made
by several authors, mainly Pradines and Bigonnet, [2], [14]. Their construction
was very well understood and its range of applicability explained by Debord in
[7]. This work deals with the foliations which arise from an almost injective Lie
algebroid, namely an algebroid whose anchor map is injective in a dense subset of
the base manifold. The integrability of such algebroids is proven (independently)
by both Debord [7] as well as Crainic and Fernandes [5]. The difference of the
two approaches is the following: For any given Lie algebroid, the latter authors
construct a certain topological groupoid (Weinstein groupoid) and give the criteria
under which it enjoys a smooth structure making it a Lie groupoid. Then it is
explained that in the almost injective case these criteria are satisfied. There might,
however, exist other integrating Lie groupoids which may as well be smaller. On
the other hand, Debord constructs a groupoid which is a priori minimal among
all Lie groupoids possibly integrating the algebroid, and shows that the almost
injectivity assumption endows it with a good smooth structure. So in the almost
injective case, it is legitimate to call Debord’s groupoid the holonomy groupoid.

On the other hand, Paterson in [13] pointed out that in order to define the
correct pseudodifferential calculus all we need is a groupoid with smooth s-fibers,
rather than universal smoothness. It is therefore understood that there might be
an alternative approach to problems such as the ones mentioned above, rather
than trying to fully integrate an algebroid. Furthermore, in [7] there are given
examples of foliations which cannot arise from almost injective Lie algebroids. It
is therefore necessary to treat the problem of the existence of a holonomy groupoid
independently from the integrability of some algebroid.

This is exactly the approach we adopt here. Once we think along these terms,
the holonomy groupoid H(F) needs merely to be the smallest groupoid which
desingularizes the foliation F . An obvious choice for such a groupoid is the equiv-
alence relation of belonging in the same leaf. The s-fibers of this are L×L, where
L is a leaf of F . Thus they are smooth although the groupoid itself is not. In this
work we show that in fact there is always a better holonomy groupoid. A rough
description of our results is:

Theorem 1.1. Let F be a (possibly singular) Stefan-Sussmann foliation on a
manifold M . Then there exists a topological groupoid H(F) ⇒ M such that:

• Its orbits are the leaves of the given foliation F .
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• H(F) is minimal in the sense that if G ⇒ M is a Lie groupoid which defines
the foliation F then there exists an open subgroupoid G0 of G (namely its
s-connected component) and a morphism of groupoids G0 → H(F) which is
onto.

• If F is regular or almost regular, i.e. defined by an almost injective Lie
algebroid, then H(F) ⇒ M is the holonomy groupoid defined in [7].

Our holonomy groupoid follows in some sense the view of Bigonnet-Pradines,
who consider local holonomies abstractly, as local diffeomorphisms of local transver-
sals. We first define a notion of atlas for F where the role of a chart is played
by the notion of a bi-submersion, which we introduce here. Bi-submersions are,
roughly, those objects which record locally the holonomies defined by exponenti-
ating the vector fields of F . Then H(F) arises as a quotient of the minimal U0

among such atlases. Its topology (as a quotient space) is quite bad, but in several
cases it has smooth s-fibers.

The importance of this approach is that it proposes a different point of view
for the issue of the holonomy groupoid, namely that it is inextricably linked with
a certain atlas. In fact, we show that smoothness may always be modified so that
the quotient map U → H(F) becomes a submersion along the s-fibers. This way
one may speak about a holonomy pair (U ,H(F)), rather than just the holonomy
groupoid. Such pairs may arise in various ways for a foliation F , e.g. by consider-
ing different atlases. When the minimal atlas U0 does not quotient to a longitudi-
nally smooth (holonomy) groupoid, we may consider the groupoid R ⇒ M defined
by the equivalence relation, and (U0, R) becomes the appropriate holonomy pair.
So the notation H(F) may mean either our quotient when it has smooth s-fibers,
or R when the quotient doesn’t have smooth s-fibers.

There is, however, a more important reason for adopting this approach. In
[1] we explain how the quotient map U → H(F) allows us to construct the C∗-
algebra of the foliation F : The usual construction cannot be applied for H(F),
since its topology is pathological, and the functions defined on it are highly non-
continuous. Thinking, however, in terms of the holonomy pair (U ,H(F)), we can
work with functions defined on the bi-submersions of U . Since the quotient map is
a submersion, we can then integrate such functions along the fibers of the quotient
map to obtain functions on H(F). Then, pullbacks of bi-submersions translate
to involution and convolution on the space of such functions, which is completed
appropriately to the full and reduced C∗-algebras of the foliation. This approach
pushes a little further the construction of the C∗-algebra given by A. Connes
for non-Hausdorff groupoids. In the regular case the resulting C∗-algebra(s) are
exactly the ones we get with the usual construction.

The construction of the C∗-algebra is beyond the scopes of this sequel. Let us
merely state at this point that bi-submersions also make possible the definition
of the appropriate pseudodifferential calculus realizing the above (reduced) C∗-
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algebra. In a forthcoming paper we give this construction, together with the
extension of the longitudinal index map given in [4] to any singular foliation.

Acknowledgements

I would like to thank the referee for his useful comments and remarks.

2 What is a foliation?

Before describing the method leading to the holonomy groupoid though, some
clarifications are necessary. The term ”foliation” on a manifold M may be under-
stood in either of the following ways:

• A partition of M to disjoint submanifolds (leaves), possibly of different di-
mension (hence the singularities), or

• A distribution F on the tangent bundle TM which is locally finitely gener-
ated by (globally defined) vector fields and involutive (satisfying the condi-
tions given by Stefan [16] and Sussmann [17]).

If a foliation is regular, then the two notions coincide, namely the leaves de-
termine the vector fields which define the distribution. Another way to see this
is that in this case F is a (constant rank) vector subbundle of TM , so locally its
module of sections does not depend on the choice of vector fields which generate
it.

In the singular case though, this is no longer true. One can get the same leaves
from different choices of vector fields. For example, consider the partition of R to
three leaves, L1 = R∗−, L2 = {0} and L3 = R∗+. These may be considered integral
submanifolds to any of the submodules Fn = 〈xn d

dt
〉 of X (M) for a positive integer

n. Although Fn+1 lies inside Fn the converse does not hold. In this example we
have a preferred choice of module, say F1, but in several other cases no such choice
is possible. For instance, take the foliation on R whose leaves are R+ and {x} for
any x ≤ 0. Then we can take F = 〈f ∂

∂x
〉 for any function f which vanishes on

every non-positive real. Note that we cannot consider the module of all vector
fields which vanish on R−, as it is not locally finitely generated.

So in the singular case one needs to determine a priori the module of vector
fields which gives the distribution. We therefore need to postulate the following
definition:

Definition 2.1. Let M be a smooth manifold. A (Stefan-Sussmann) foliation on
M is a locally finitely generated submodule of the C∞(M)-module of compactly
supported vector fields Xc(M), stable under Lie brackets.

In what follows we assume the choice of such a submodule F . A different
choice of submodule leads to a different holonomy groupoid.



The holonomy of a singular foliation 13

2.1 Pseudogroups of diffeomorphisms

There is a deeper approach to what a foliation really is. A module F on a manifold
M as above gives rise to two pseudogroups of local diffeomorphisms:

• The pseudogroup Aut(M,F) of local diffeomorphisms g of M which preserve
the foliation, namely such that g∗F = F .

• The pseudogroup exp F generated by exp X with X ∈ F .

The next result is the key ingredient of the Frobenius theorem:

Proposition 2.2. The pseudogroup exp F is a normal sub-pseudogroup of Aut(M,F).

Proof. Let X ∈ F ; we have to show that exp X ∈ Aut(M,F). Replacing M by
a neighborhood of the support of X, we may assume that F is finitely generated.
Take Y1, . . . , Yn to be global sections of F generating F . Since [X,Yi] ∈ F , there
exist functions αi,j ∈ C∞

c (M) such that [X, Yi] =
∑

j αj,iYj.
Denote by L : C∞(M)n → C∞(M)n the linear mapping given by L(f1, . . . , fn) =

(g1, . . . , gn), where gi = X(fi) +
∑

j αi,jfj.
Let S : C∞(M)n → F be the map (f1, . . . , fn) 7→ ∑

fiYi; since LX ◦S = S ◦L,
we find exp X ◦ S = S ◦ exp L. Therefore, exp X(F), which is the image of
exp X ◦ S, is contained in the image of S, i.e. it is contained in F .

Furthermore, if g ∈ Aut(M,F), we find g ◦ exp X ◦ g−1 = exp (g∗X) ∈ exp F .

More that that, the leaves of F are just the orbits of the action of exp F on
M . There may be other pseudogroups of local diffeomorphisms preserving F . For
instance, suppose the foliation F is defined by a Lie groupoid G ⇒ M ; this means
that F is the image by the anchor map of the sections of the Lie algebroid AG.
(In this case a leaf at x ∈ M is t(s−1(x)).) Any Lie groupoid has local bisections
(see [9, 1.4.9]). Let us give a slightly different (but equivalent) definition here:

Definition 2.3. Let G ⇒ M be a Lie groupoid.

1. A bisection is a locally closed submanifold V of G such that the restrictions
of both s and t to V are diffeomorphisms from V onto open subsets of M .

2. The local diffeomorphism associated to a bisection V is ϕV = t ◦ s−1 of M ,
where sV : V → s(V ) and tV : V → t(V ) are the restrictions of s and t to
V .

So if F is defined by a Lie groupoid G ⇒ M , then the local diffeomorphisms
defined from all the bisections form a pseudogroup which sits inside Aut(M,F).
In the regular case the holonomy groupoid is the one whose bisections define the
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pseudogroup exp F . This is a key observation, pointing us to the correct direc-
tion for the singular case: The holonomy groupoid should record this particular
pseudogroup of local diffeomorphisms.

From this point of view it is clearer why the construction of the holonomy
groupoid is usually treated as a local problem. For instance, Debord defines an
atlas of quasi-graphoids for the foliation, and the holonomy groupoid turns out to
be a quotient of this atlas. Our approach is along similar lines.

3 Atlases for foliations

Let us start with the usual notion of atlas for a compact and connected n-
dimensional manifold M . An atlas is understood as a collection of charts, namely
bijections (x1, . . . , xn) : U → Bn(R), where Bn(R) is an open ball in Rn and U
a subset of M , which we declare open. The manifold M may be regarded as a
foliation with one leaf, or, equivalently, with F = X (M). Locally F is generated
by the vector fields ∂

∂x1 , . . . ,
∂

∂xn induced by the coordinate functions.
These vector fields tell us how to ”move” along the (unique, in this case) leaf

by following their integral curves. To see this, consider a chart (U, (x1, . . . , xn))
at a point m ∈ M . Then there is an open neighborhood Ω of U × Rn at (m, 0)
such that the maps

s, t : Ω → M, s = pr1, t(x, y1, . . . , yn) = exp (
∑

ti
∂

∂xi
)(x)

are defined in Ω and are submersions. Now Ω ⇒ M is not a groupoid, nevertheless
its ”orbits” t(s−1(m)) still tell us how to move close to m following the flows of the
vector fields which define the foliation. So the usual notion of an atlas for a smooth
manifold can be reformulated to provide the necessary information concerning how
we can move along a leaf.

A different approach would be to consider bisections (the definition is given
in 2.3). Considering all the bisections of Ω ⇒ M above, it is straightforward that
the pseudogroup of local diffeomorphisms they induce is exactly exp X (M).

This picture is similar to what is going on when a Lie groupoid G exists for
a foliation F . In fact, choosing locally a base of sections for the Lie algebroid
AG and using the exponential map we can show that locally a Lie groupoid G is
diffeomorphic to an Ω as above. Furthermore, if F is regular we can choose locally
a base of vector fields which generate F and apply the previous construction. But
with a general singular foliation F , things are more complicated because there are
several leaves of varying dimensions.

3.1 Bi-submersions

Let us make a fresh start now and see how we can generalize the notion of an atlas
in the above sense to fit foliations. Take a point m ∈ M . For any open U ⊂ M at
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m, the linear subspace Fm ⊆ TmM is defined by the values of the vector fields in
the C∞(U)-module F(U). This module is finitely generated, but there is no base;
if there was a choice of linearly independent generators, say X1, . . . , Xn, then we
might use them to imitate the previous construction. We ensure the existence of
such generators in the following way:

Let Im = {f ∈ C∞(M) | f(m) = 0} and denote Fm = F/ImF . This is a finite
dimensional vector space, and the evaluation map induces an exact sequence of
vector spaces

0 → gm → Fm
evm→ Fm → 0

It follows that the kernel gm of this extension has a bracket which makes it a Lie
algebra. Actually gm records the isotropy of the foliation at m.

Example 3.1. Consider the partition of R2 into two leaves: {0} and R− {0}. It
is given by the action of either of the Lie groups GL(2,R), SL(2,R) or C∗. The
module F is different for each of these actions. The corresponding Fx are equal
to TxR2 at each non-zero x ∈ R2 and at zero they are exactly the Lie algebra of
the group.

The Fxs allow us to choose local generators for F as the next proposition
shows:

Proposition 3.2. If the images of X1, . . . , Xn ∈ F form a base of Fx, then there
exists a neighborhood U of x in M such that F restricted to U is generated by
X1, . . . , Xn.

Proof. As in the proof of 2.2, we assume that F is finitely generated as a mod-
ule and consider global sections Y1, . . . , Yn generating F . Since the images of
X1, . . . , Xk form a basis of Fx, there exist a`,i ∈ C for 1 ≤ i ≤ N and 1 ≤
` ≤ k such that Yi −

∑k
`=1 a`,iX` ∈ IxF . It follows that there exist functions

αi,j ∈ C∞(M) for 1 ≤ i, j ≤ N such that αi,j(x) = 0 and for all i we have

Yi −
∑k

`=1 a`,iX` =
∑n

i=1 αj,iYj in a neighborhood of x. This can be written as∑N
j=1 βj,iYj =

∑k
`=1 a`,iX` for all 1 ≤ i ≤ N , where βi,j = −αi,j if i 6= j and

βi,i = 1− αi,i

For y ∈ M , let By denote the matrix with entries βi,j(y). Since Bx is the
identity matrix, for y in a neighborhood U of x, the matrix B(y) is invertible.
Write (B(y))−1 = (γi,j(y)). We find on U , Yi =

∑k
`=1 c`,iX`, where c`,i =

∑
a`,jγj,i.

Proposition 3.3. Let X1, . . . , Xn be vector fields whose images form a base of
Fm. Then there exists an open neighborhood Ω of (m, 0) in M × Rn such that

1. The maps s, t : Ω → M defined by s = pr1 and t(x, y) = exp(
∑

yiXi)(x) are
submersions

2. s−1(F) = t−1(F) and s−1(F) = C∞
c (Ω; ker ds) + C∞

c (Ω; ker dt).
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(Here s−1(F) stands for the vector fields of Ω which map to F by ds.)

Proof. Let y, z ∈ Rn; set Y =
∑

yiXi and Z =
∑

ziXi. For α ∈ R define
ψα = t(·, αy). The formula for the derivative of X 7→ exp X yields

(dt)(x,y)(0, z) =

∫ 1

0

(ψ1−α)∗(Zψα(x)) dα.

Let us show that C∞
c (M × Rn; ker ds) ⊂ t−1F : Consider the vector field Ẑ

on M × Rn defined by Ẑ(x, y) = (
∑

yiXi(x), 0y). It belongs to s−1(F). The

local diffeomorphism ϕ = exp (Ẑ) fixes s−1(F), namely ϕ ∈ exp (s−1F). Define
ψ = α◦ϕ, where α : M×Rn → M×Rn is α(x, y) = (x,−y). Then ψ ∈ exp (s−1F)
and ψ2 = id, s ◦ ψ = t. The result follows.

Now, since F is spanned by the Xi’s in a neighborhood U of x in M , there exists
a smooth function h = (hi,j) defined in a neighborhood W0 of (x, 0) in U×Rn with
values in the space of n× n matrices such that: (dt)(x,y)(0, z) =

∑
zihi,j(x, y)Xj,

and hi,j(x, 0) = δi,j. Taking a smaller neighborhood W , we may assume that
h(x, y) is invertible. In this neighborhood we have

t−1(F) = C∞
c (W ; ker ds) + C∞

c (W ; ker dt).

Let κ : M × Rn → M × Rn be the map defined by κ(y, u) = (t(x, y),−y). Note
that κ is an involution of M × Rk and s ◦ κ = t (whence t ◦ κ = s). Put then
Ω = W ∩ κ(W ).

Notice that the second assertion is exactly what happens with the source and
target maps of a Lie groupoid. Here we don’t consider any multiplication though.
The usual notion of a manifold chart may thus be generalized in the following
way:

Definition 3.4. A bi-submersion for a foliation F on a smooth manifold M
is a triple (U, tU , sU) such that U is a smooth manifold, tU , sU : U → M are
submersions and they satisfy 2 as above. A bi-submersion Ω as above is called a
bi-submersion near the identity.

Let (Ui, ti, si) be two bi-submersions. A morphism is a smooth map φ : U1 →
U2 such that s2 ◦ φ = s1 and t2 ◦ φ = t1.

3.2 Bisections

One may consider various bi-submersions for a foliation F , each of them reflecting
a different way one can move along a leaf in the vicinity of a point. The question
that arises naturally is

when do two bi-submersions provide the same local diffeomorphisms
for the foliation?
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The obvious answer is when they locally record the same local diffeomorphisms.
Perhaps the best way to understand this is by examining the (local) bisections
of a bi-submersion. It follows from the proof of [9, 1.4.9] that bisections exist
for any pair of submersions U ⇒ M between smooth manifolds. It is therefore
legitimate to talk about the bisections of a bi-submersion in the sense of 2.3.

Definition 3.5. Let (U, tU , sU) be a bi-submersion of (M,F). Let u ∈ U and ϕ
a local diffeomorphism of M . We say that ϕ is carried by (U, tU , sU) at u if there
exists a bisection V such that u ∈ V and whose associated local diffeomorphism
coincides with φ in a neighborhood of u.

Thus a bi-submersion may be thought of as a manifestation of a certain col-
lection of local diffeomorphisms of M which respect the foliation F . For example,
the bi-submersions near the identity carry the local diffeomorphisms of the form
exp F , namely the ones generated by {exp X | X ∈ F}.

Returning to the question we posed above, two bi-submersions will locally
record the same local diffeomorphisms if both of them have local bisections which
induce such diffeomorphisms. The simplest way to ensure the existence of such
bisections is to assume there is a local morphism between the two bi-submersions.
This leads to the next definition:

Definition 3.6. Let U = (Ui, ti, si) be a family of bi-submersions. A bi-submersion
(U, tU , sU) is adapted to U if for all u ∈ U there exists an open subset U ′ ⊆ U ,
an element i ∈ I and a map U ′ → Ui which preserves s and t.

The following result is crucial:

Proposition 3.7. Let x ∈ M . Let X1, . . . , Xn ∈ F be vector fields whose images
form a basis of Fx. For y = (y1, . . . , yn) ∈ Rn, put ϕy = exp (

∑
yiXi) ∈ exp F .

Put W0 = Rn ×M , s0(y, x) = x and t0(y, x) = ϕy(x).

a) There is a neighborhood W of (0, x) in W0 such that (W , t, s) is a bi-
submersion where s and t are the restrictions of s0 and t0.

b) Let (V, tV , sV ) be a bi-submersion and v ∈ V . Assume that sV (v) = x
and that the identity of M is carried by (V, tV , sV ) at v. There exists an
open neighborhood V ′ of v in V and a submersion g : V ′ → W which is a
morphism of bi-submersions and g(v) = (0, x).

Proof. a) This is proposition 3.3.

b) Replacing V by an open subset containing v, we may assume that sV (V ) ⊂
s(W) and that the bundles ker dtV and ker dsV are trivial. Since t−1

V (F) =
C∞

c (V ; ker dsV ) + C∞
c (V ; ker dtV ), the map dt : C∞

c (V ; ker dsV ) → t∗V (F) is
onto, and there exist Y1, . . . , Yn ∈ C∞(V ; ker dsV ) such that dtV (Yi) = Xi.
Since Xi(x) form a basis of Fx, the Yi(v) are independent. Replacing V
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by an open neighborhood of v, we may assume that the Yi’s are indepen-
dent everywhere on V . Let Zn+1, . . . , Zk be sections of ker ds such that
(Y1, . . . , Yn, Zn+1, . . . , Zk) is a basis of ker dsV . Since dtV (Zi) ∈ t∗V (F) which
is spanned by the Yi’s, we may subtract a combination of the Xi’s so to
obtain a new basis (Y1, . . . , Yn, Yn+1, . . . , Yk) satisfying dtV (Yi) = Xi if i ≤ n
and dtV (Yi) = 0 if i > n. For y = (y1, . . . , yk) ∈ Rk small enough we denote
by ψy the (partially defined) diffeomorphism exp (

∑
yiYi) of V .

Let U0 ⊂ V be a bisection through v representing the identity, i.e. such
that sV and tV coincide on U0. We identify U0 with an open subset of M
via this map. There exists an open neighborhood U of v in U0 and an open
ball B in Rk such that h : (y, u) 7→ ψy(u) is a diffeomorphism of U ×B into
an open neighborhood V ′ of v. Let p : Rk → Rn be the projection to n first
coordinates. The map p ◦ h−1(V ′) → W is the desired morphism. It is a
submersion.

Proposition 3.7 really shows that bi-submersions near the identity are adapted
to any other bi-submersion. More clearly, it means that:

Corollary 3.8. Let (U, tU , sU) and (V, tV , sV ) be bi-submersions and let u ∈ U ,
v ∈ V be such that sU(u) = sV (v).

a) If the identity local diffeomorphism is carried by U at u and by V at v, there
exists an open neighborhood U ′ of u in U and morphism f : U ′ → V such
that f(u) = v.

b) If there is a local diffeomorphism carried both by U at u and by V at v, there
exists an open neighborhood U ′ of u in U and morphism f : U ′ → V such
that f(u) = v.

c) If there is a morphism of bi-submersions g : V → U such that g(v) = u,
there exists an open neighborhood U ′ of u in U and morphism f : U ′ → V
such that f(u) = v.

3.3 Moving far along a leaf

The picture given by local bisections describes a neighborhood of a leaf Lm of F
around m. The question that arises naturally is

how can one move far away from m along the same leaf?

Lie groupoids give us this information because they enjoy a (partially defined)
multiplication among arrows. But since we care about points on the leaf, it is not
really the product of a sequence of arrows on the groupoid level that we need. It
suffices to know the collection of all composable arrows. For bi-submersions we
observe:
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Proposition 3.9. Let (U1, t1, s1) and (U2, t2, s2) be two bi-submersions for the
foliation F on M . Then the pullback manifold U1×(s1,t2)U2 is also a bi-submersion
for F . We call U1 ×(s1,t2) U2 the composition of U1 and U2 and write U1 ◦ U2.

So if we consider a family of bi-submersions and all its compositions, we have
a way to move along the leaves of a foliation. With these ingredients in hand we
can now give the definition of an atlas for a foliation F :

Definition 3.10. We say that U = {(Ui, ti, si)}i∈I is an atlas for the foliation F
if:

1.
⋃

i∈I si(Ui) = M

2. The inverse (Ui, s, t) of every (Ui, t, s) is adapted to U .

3. The composition of two elements is adapted to U .

We say that an atlas U1 is adapted to the atlas U if every bi-submersion in U1 is
adapted to a bi-submersion of U .

An obvious example of an atlas is a Lie groupoid G ⇒ M (for the foliation it
induces on M).

By abuse of notation we write U for the maximal atlas associated to an atlas
for F as above. Namely the family U will include all the bi-submersions which
are adapted to it. An atlas, as above, gives a full description of the leaves of a fo-
liation F . Bearing in mind the role of bisections, one understands that the choice
of an atlas corresponds to the choice of a certain family of local diffeomorphisms
which preserve F . Such a family provides information regarding the leaves of the
foliation.

We denote U0 the atlas generated by the bi-submersions near the identity Ω
as in proposition 3.3. In the context of local diffeomorphisms U0 can be thought
to represent the family of local diffeomorphisms exp F . It turns out that U0 is
adapted to any other atlas. It is called the path holonomy atlas.

4 The holonomy groupoid

An atlas U = {(Ui, ti, si)}i∈I as above gives rise to a groupoid G(U) ⇒ M ,
whose orbits are exactly the leaves of the foliation F . To make this more precise,
consider the equivalence relation in the discrete union

∐
i∈I Ui defined by

U1 3 u1 ∼ u2 ∈ U2 ⇔ there exists locally a morphism of bi-submersions
f : U1 → U2 such that f(u1) = u2.
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Then G(U) is the quotient space of this relation, and it is obviously a groupoid
over M . It has the quotient topology, which is usually ill-behaved. This way,
starting from any atlas U for F we get a topological groupoid for the leaf space
of F . The following result is the key ingredient to show that the atlas U0 is the
one that gives the holonomy groupoid.

Proposition 4.1. Every s-connected Lie groupoid which realizes F is adapted to
the atlas U0 of bi-submersions near the identity.

To see this, first note:

Proposition 4.2. Let U be an atlas for the foliation F and (U, tU , sU) a bi-
submersion adapted to U . Then there exists a map qU : U → G(U) which preserves
the source and target maps.

Now consider the atlas U0 generated by the bi-submersions near the iden-
tity and denote H(F) ⇒ M its associated groupoid. Since any s-connected Lie
groupoid G ⇒ M which realises F is adapted to U0 it follows that there is a map
qG : G → H(F). This map is easily seen to be a morphism of groupoids onto
H(F). This shows that H(F) is the holonomy groupoid.

The holonomy groupoid constructed by Debord is really H(F) in case the
module F is projective. This is shown by the following proposition which is a
straightforward application of the Serre-Swan theorem.

Proposition 4.3. If the module F is projective then it carries a natural Lie
algebroid structure and H(F) is a Lie groupoid.

4.1 The topology of the holonomy groupoid

The topology of the holonomy groupoid, as well as all groupoids associated with
other atlases, is usually quite bad, as it is a quotient topology.

Let us fix an atlas U and let GU be the associated groupoid. For every bi-
submersion (U, t, s) adapted to U , let VU ⊂ U be the set of u ∈ U such that
dim TuU = dim M + dimFs(u). It is an open subset of U when U is endowed with
the smooth structure along the leaves of the foliation t−1(F) = s−1(F).

Proposition 4.4. a) For every x ∈ G, there is a bi-submersion (U, t, s) adapted
to U such that x ∈ qU(VU).

b) Let (U, t, s) and (U ′, t′, s′) be two bi-submersions and let f : U → U ′ be a
morphism of bi-submersions. Let u ∈ U . If u ∈ VU , then (df)u is injective;
if f(u) ∈ VU ′, then (df)u is surjective.

Proof. a) Let x ∈ G. Let (W, t, s) be a bi-submersion adapted to U and w ∈ W
and such that x = qW (w). Let A ⊂ W be a bi-section through w. Let
g : s(A) → t(A) be the local diffeomorphism of M defined by A. By
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proposition 3.7 there exists a bi-submersion (U0, t0, s0) and u0 ∈ U0 such
that dim U0 = dimFs(u) + dim M , s0(u0) = s(u) and carrying the identity
through u0. Put then U = {x ∈ U0; t0(u) ∈ s(A)} and let s be the
restriction of s0 to U and t be the map u 7→ g(t0(u)). Obviously (U, t, s) is
a bi-submersion which carries g at u0. It follows that (U, t, s) is adapted to
U at u0 and qU(u0) = qW (w) = x. It is obvious that u0 ∈ VU .

b) Since s and s′ are submersions and s′ ◦ f = s, dfu is injective or surjective
if and only if its restriction (df| ker ds)u : ker(ds)u → ker(ds′)f(u) is. Consider
the composition

ker(ds)u

(df| ker ds)u−→ ker(ds′)f(u)
t′∗−→ Fs(u).

By definition of bi-submersions the maps t′∗ and t∗ = t′∗ ◦ (df)u are onto; if
u ∈ ΓU , then t∗ : ker(ds)u → Fs(u) is an isomorphism; if f(u) ∈ ΓU ′ , then
t′∗ : ker(ds′)f(u) → Fs(u) is an isomorphism. The conclusion follows.

It follows from 4.4(b) that the restriction of f to a neighborhood of VU ∩
f−1(VU ′) is étale. This restriction preserves the foliation, and is therefore étale
also with respect to this structure. Now the VU are open in U with respect to the
longitudinal structure; they are manifolds. The groupoid G is obtained by gluing
them through local diffeomorphisms.

Remark 4.5. Looking at GU longitudinally, we observe that the necessary con-
dition for it to be a manifold is the following: We need to ensure that for every
x ∈ M there exists a bi-submersion (U, t, s) in the path holonomy atlas and a
u ∈ U which has an open neighborhood Uu ⊆ U with respect to the leaf topology
such that the quotient map Uu → GU is injective. Under this condition the s
(t)-fibers of GU are smooth manifolds (of dimension equal to the dimension of the
underlying leaf) and the quotient map qU : U → GU is a submersion along the s
(t)-fibers. However, this condition is not always satisfied, and this fact leads to
the following definition:

Definition 4.6. A holonomy pair for a foliation (M,F) is a pair (U , G) where U is
an atlas of bi-submersions and G is a groupoid over M which is a Lie groupoid for
the longitudinal smooth structure, together with a surjective groupoid morphism
α : GU → G such that the maps α ◦ qU are leafwise submersions for each U ∈ U .

In case (U , GU) is not a holonomy pair for some atlas U we can always replace
GU with the groupoid RF defined naturally by the equivalence relation of ”be-
longing in the same leaf”. This groupoid is not smooth but has smooth fibers.
Moreover, for every bi-submersion (U, t, s) the maps (tU , sU) : U → RF play the
role of qU .
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This deals with the cases where the atlas U does not satisfy the condition we
mentioned above. In the overall, given a foliation F there always exists a minimal
holonomy pair (U , RF). Minimal here means that the atlas U is adapted to any
other atlas. In many cases there exists an even ”better” one, namely (U,H(F)).
That is, when H(F) happens to have smooth s-fibers. It is explained in [1] that
the minimal holonomy pair arises when we consider the path holonomy atlas.

It is also explained in [1] that holonomy pairs are all we need in order to
construct a C∗-algebra. Such data is always available.
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Zn bundle gerbes 1

by Haruo Suzuki

Abstract
A notion of Zn bundle gerbes over a manifold is formulated. For an n

root bundle gerbe the characteristic map is c1 mod n, where c1 is the Chern
class of the associated C× bundle. Zn bundle gerbes over a manifold M are
classified completely by the cohomology H2(M ;Zn). Bundle gerbes for a
finitely generated abelian group are also considered.

1 Introduction

In order to study gerbes of J. Giraud [5] and J.-L. Brylinski [[3] 5.2.4. Definition
p.196] with a band of the sheaf of discrete abelian group, we introduce a notion
of Zn bundle gerbe by the parallel argument of C× bundle gerbes due to M. K.
Murray [7]. We generalize the base space of a Zn bundle groupoid to a fibered
space π : Y → M in order to get a notion of the Zn bundle gerbe G(n,M) over M .
Then its triviality and a product operation of two Zn bundle gerbes are defined.
The main results of the present paper are the followings.

Theorem 2.1. For a manifold M , we have a map c : {G(n,M)} → H2(M ;Zn)
from the set of isomorphism classes of Zn bundle gerbes to the 2-cohomology of M
with coefficients in Zn. c is precisely the obstruction to a Zn bundle gerbe being
trivial.

Just as the arguments by M. K. Murray and D. Stevenson [8], it is shown that
Zn bundle gerbes are gerbes. Firstly, n root bundle gerbes G(n

√
,M) are defined

by choosing a C× bundle Y C× as the fibered space π : Y → M and relating the
Zn bundle groupoid over a fiber to the central extension

1 → Zn
ι→ C× ( )n

→ C× → 1.

We denote the Chern class c1(Y
C×) ∈ H2(M ;Z) by c1(G(n

√
,M)). Then we have

Theorem 4.1. For any n root bundle gerbe G(n
√

, M) we get

c(G(n
√

,M)) = c1(G(n
√

, M)) mod n.

1Received: December 5, 2006
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The Maslov gerbe of A. Weinstein [11] is a Z2 bundle gerbe, more explicitly a
square root bundle gerbe.

Secondly, besides n root bundle gerbes, projective Zn bundle gerbes
G(PU(n),M) are defined by choosing a PU(n) bundle Y PU(n) as the fibered space
π : Y → M and relating the Zn bundle groupoid over a fiber to the central
extension

1 → Zn → SU(n)
ρ→ PU(n) → 1,

where ρ : SU(n) ⊂ U(n) → PU(n) ∼= U(n)/U(1) is the quotient map. The
notion of stable isomorphism of two Zn bundle gerbes is introduced and the class
of gerbes stably equivalent (just Morita equivalent) to G(n,M) is denoted by
GS(n,M). The map c of Theorem 2.1 induces an injective homomorphism cS :
{GS(n,M)} → H2(M ;Zn), called characteristic homomorphism.

Theorem 5.3. Suppose that M is a manifold. Then the characteristic homomor-
phism restricted to {GS(PU(n),M)} is an isomorphism onto Tor(H3(M ;Z),Zn).
Moreover the cS is an isomorphism {GS(n,M)} ∼= H2(M ;Zn).

For a finitely generated abelian group D, one can consider D bundle gerbes
and by the above theorem, the Morita equivalence classes {GS(D, M)} over a
manifold M are completely classified by H2(M ; D).

In Section 2, we define Zn bundle gerbes G(n,M) over M and prove Theorem
2.1. We obtain the characteristic homomorphism cS of Morita equivalence classes
{GS(n,M)} to H2(M ;Zn). In Section 3, we explain that Zn bundle gerbes are
gerbes in the sense of Giraud. In Section 4, we examine structures of the principal
C× bundles associated with n root bundle gerbes and prove Theorem 4.1. In
Section 5, we examine structures of the principal PU(n) bundles associated to
projective Zn bundle gerbes by the relation to Azumaya bundles of V. Mathai,
R. B. Melrose and I. M. Singer [9], and P. Donovan and M. Karoubi [4]. Then
we prove Theorem 5.3. In the last section, we show briefly the conclusion on
the Morita equivalence classes of D bundle gerbes over a manifold for a finitely
generated abelian group D.

Acknowledgement. The author thanks Professor A. Weinstein for his information

of the paper [9] by Mathai, Melrose and Singer, and his suggestion to the notion
of Z bundle gerbes. The author appreciates proper comments of referee.
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2 Zn bundle gerbes

Let Zn denote the cyclic group of order n and let p : P → X be a principal
Zn bundle over a space X. Let Zn acts on P × P to the right by (u1, u2)g =
(u1g, u2g). We denote the orbit of (u1, u2)g by < u1, u2 > and the set of orbits
by (P × P )/Zn. Then one gets a groupoid (P × P )/Zn ⇒ X with respect to the
following structure: The source and target projections are α < u1, u2 >= p(u2)
and β < u1, u2 >= p(u1); the object inclusion map x = x̃ =< u, u > where u
is any element of p−1(x); and the partial multiplication P ◦ P → P is defined
by < u1, u

′
2 >< u2, u3 >=< u1, u3δ(u

′
2, u2) >, where δ : P × P → Zn is the

map (ug, u) 7→ g. The inverse of < u1, u2 > is < u2, u1 >. This is the groupoid
associated to p : P → X (cf. K. Mackenzie [6] (p.5-p.6)), which we call a Zn

groupoid.
Let π : Y → M be a fibration over a manifold M . We consider a Zn bundle

P → Y [2] = Y ×M Y , such that for each m ∈ M , the restriction bundle P |Y 2
m

is
identified with the groupoid space Pm ⊗ Pm = (Pm × Pm)/Zn associated with the
Zn bundle Pm → Ym where π−1(m) = Ym and Pm = d−1

m (P ) with the diagonal
map dm : Ym → Y [2], y 7→ (y, y). The groupoid product Pm ◦ Pm → Pm is
naturally extended to a Zn bundle isomorphism P ◦ P → P covering the product
(y1, y2)(y2, y3) = (y1, y3) in Y [2].

A Zn bundle gerbe G(n,M) over M is defined to be a choice of a fibration
π : Y → M and a Zn bundle P → Y [2] with a product, that is, a Zn bundle iso-
morphism P ◦P → P covering the product (y1, y2)(y2, y3) = (y1, y3). The product
is associative whenever triple products are defined. Just as for Zn groupoids,
a Zn bundle gerbe has an inverse and an identity denoted by the same sym-
bols. Let Q → Y be a principal Zn bundle. A Zn bundle gerbe P is defined by
P(x,y) = AutZn(Qx, Qy) = Q∗

x ⊗Qy where Q∗ is the inverse bundle of Q. Then P
is called the trivial bundle gerbe. We also have P = π−1

1 Q∗ ⊗ π−1
2 Q.

If (P, Y,M) and (Q,X, M) are Zn bundle gerbes over M , we can form a fiber
product Y ×M X → M and then form a Zn bundle P ⊗Q over (Y ×M X)[2] which
is the product of the gerbes (P, Y, M) and (Q,X, M). For triple Zn bundle gerbes,
this product is associative.

Let P → Y [2] be a Zn bundle gerbe. Choose an open cover {Uα} of M such
that over each Uα there is a section sα of Y . Then on the overlap Uα ∩ Uβ we
have a map (sα, sβ) : Uα ∩ Uβ → Y [2] defined by (sα, sβ)(x) = (sα(x), sβ(x)). As
examples of Y , we mention a C× bundle in Section 4 and a PU(n) bundle in M.
F. Atiyah [1].

Theorem 2.1. For a manifold M , we have a map c : {G(n,M)} → H2(M ;Zn)
from the set of isomorphism classes of Zn bundle gerbes to the 2-cohomology of M
with coefficients in Zn. c is precisely the obstruction to a Zn bundle gerbe being
trivial.
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Proof. By a parallel argument to the C× bundle gerbe in [7], we define a “charac-
teristic map” from {G(n,M)} to H2(M ;Zn) as follows: Let Pαβ be the pull-back
of P via the map (sα, sβ) : Uα ∩ Uβ → Y [2]. The product in P gives an isomor-
phism Pαβ⊗Pβγ

∼= Pαγ. Choose sections σαβ of each Pαβ. Then the product gives
a Zn valued function

gαβγ : Uα ∩ Uβ ∩ Uγ → Zn

defined by σαβσβγ = σαγgαβγ.
By making use of comutativity of Zn action with σαβ’s one gets

gβγδg
−1
αγδgαβδg

−1
αβγ = (σ−1

βδ σβγσγδ)(σ
−1
αδ σαγσγδ)

−1(σ−1
αδ σαβσβδ)(σ

−1
αγ σαβσβγ)

−1

= (σ−1
βδ σβγσγδ)(σ

−1
γδ σ−1

αγ σαδ)(σ
−1
αδ σαβσβδ)(σ

−1
βγ σ−1

αβσαγ)

= (σ−1
βδ σβγσ

−1
βγ σ−1

αβσαγ)σ
−1
αγ σαβσβδ

= σ−1
βδ σβδ

= 1.

Therefore g = {gαβγ} is a Čech cocycle of the open cover of M with respect to
Zn.

Let P → Y [2] and P ′ → (Y ′)[2] be isomorphic Zn bundle gerbes over M . Since
Y → M and Y ′ → M sre isomorphic too, one can regards {sα} and {s′α} are the
same upto a bundle ismorphism. Let σ′αβ be a section of P ′

αβ on Uα ∩ Uβ and let
hαβ denote σαβ(σ′αβ)−1. The cocycle g′αβγ is defined by σ′αβσ′βγ = σ′αγg

′
αβγ. Then

we have

σαβσβγ(σ
′
βγ)

−1(σ′αβ)−1 = (σαγgαβγ)(σ
′
αγg

′
αβγ)

−1

= σαγ(σ
′
αγ)

−1gαβγ(g
′
αβγ)

−1.

The last equation shows that
∂h = g(g′)−1,

for h = {hαβ}, that is,
[g] = [g′] ∈ H2(M ;Zn).

Therefore the map c : {G(n,M)} → H2(M ;Zn) is well defined.
To prove the second part of the theorem, suppose that P is trivial, say P =

π−1
1 Q∗ ⊗ π−1

2 Q for some bundle Q → Y . We can define Qα = s∗α(Q) and we have
a canonical isomorhpism Pαβ = Q∗

α ⊗Qβ commuting with products. If we choose
a section δα of Q and define σαβ = (δα)−1 ⊗ δβ we obtain a trivial cocycle g.

If g is trivial, say gαβγ = ραβρβγργα, where ρ is Zn valued function. One can
replace σαβ by σαβρ−1

αβ and assume without loss ofgenerality that g ≡ 1, that is
gαβγ = 1. Let Yα = π−1(Uα). Define a principal Zn bundle Qα over Yα by defining
its fiber at y to be (Qα)y = P(y,sα(π(y))). The σαβ are elements of

P(sα(π(y)),sβ(π(y))) = P ∗
(y,sα(π(y))) ⊗ P(y,sβ(π(y)))
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= (Q∗
α)y ⊗ (Qβ)y.

The σαβ therefore define automorphisms between Qα and Qβ over Yα∩Yβ. Piecing
together, we get a bundle Q over all Y , which trivializes the gerbe P over Y .

We call the map c : {G(n,M)} → H2(M ;Zn) a characteristic map and call
c(G(n,M)) ∈ H2(M ;Zn) the characteristic class of G(n, M). Two Zn bundle
gerbes P = (P, Y, M) and Q = (Q,Z,M) are called stably isomorphic if there
are trivial bundle gerbes T1 and T2 such that P ⊗ T1 = Q ⊗ T2. We see directly
that the stable isomorphism is an equivalence relation and product operations
are compatible with the equivalence. Let GS(n,M) denote the stable equivalence
class of Zn bundle gerbes over M .

Corollary 2.2. The map c : {G(n,M)} → H2(M ;Zn) induces an injective ho-
momorphism cS : {GS(n,M)} → H2(M ;Zn).

Proof. Since the trivial Zn bundle gerbe goes to zero by the homomorphism c and
c is additive over tensor products, one gets c(P ) = c(P ⊗T1) = c(Q⊗T2) = c(Q).
Therefore, c induces a homomorphism cS : {GS(n,M)} → H2(M ;Zn). If c(P ) =
c(Q) then we c(P ⊗Q∗) = c(P )− c(Q) = 0. Hence P ⊗Q∗ is trivial by Theorem
2.1. We see that Q⊗Q∗ is also trivial and that P ⊗ (Q∗⊗Q) = Q⊗ (P ⊗Q∗), so
P and Q are stably isomorphic, that is, the homomorphism cS is injective.

Remark 2.3. For a trivial bundle gerbe (T,X,M) the map P ⊗ T → P, u ⊗
v 7→ u over the Morita morphism [(Y ×M X)[2] ⇒ Y ×M X] → [Y [2] ⇒ Y ],
((ym,1, ym,2), (xm,1, xm,2)) 7→ (ym,1, ym,2) (m ∈ M) is Zn equivariant, therefore the
map P ⊗T → P is a Zn eqivariant Morita morphism of Lie groupoids. Hence the
stable equivalence of Zn bundle gerbes is Morita equivalence of gerbes as central
extensions of a groupoid in the sense of J.-L. Tu, P. Xu and C. Laurent-Gengoux
[10]. It is easy to see that the converse is true and GS(n,M) is the set of Morita
equivalence classes of Zn bundle gerbes.

Remark 2.4. For any abelian group A, A bundle gerbes G(A,M) over M, Morita
equivalence classes GS(A,M) and the injective homomorphism cS can be defined
by replacing Zn by A, in the arguments in the above. In the last section we extend
our results to the D bundle gerbes for a finitely generated abelian group D.

3 Relationship with Zn gerbes

We construct Zn gerbes G(n, M) in the sense of J. Giraud [5] (cf. J.-L. Brylinski
[[3] 5.2.4 Definition, p.196] from Zn bundle gerbes along the way to get C× gerbes
by M. K. Murray and P. Stevenson [8]. Let (P, Y, M) be a Zn bundle gerbe over
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a manifold M . For any open set U in M , we define a category Gn(U) as follows.
The objects of Gn(U) are the set of all trivializations of the restriction of (P, Y )
to U . That is all pairs (Q, f) where Q is a Zn bundle over YU = π−1(U) ⊂ Y
and f : π−1

1 (P )∗ ⊗ π−1
2 (P ) → Q|

Y
[2]
U

is an isomorphism of Zn bundle gerbes. The

morphisms between two objects (Q, f) and (P, g) are all ismorphisms of Zn bundle
gerbes which commute with f and g.

Theorem 3.1. Zn bundle gerbes are gerbes.

Proof. For every open set U , we have a groupoid Gn(U) which is possibly trivial
one. The restriction functor is exctly the trivialization over YU to YV if V ⊂ U .
This makes G(n,M) a presheaf of groupoids. To show G(n,M) is a sheaf of
groupoids, we need to check two patching conditions on objects and morphisms
as in [[3] 5.2.1. Definition (2), p.191]. Assume that we have an open cover {Uα}
of an open set U . First consider two trivializations (Qi, fi) i = 1, 2 in Gn(U)
with morphisms φα : Q1|Uα → Q2|Uα for each α agreeing on overlaps. Then these
clearly patch together to yield a global morphism φ and as the φα commute with
the fi so also does φ. Second assume that we have trvializations (Qα, fα) in each
Gn(Uα) and morphisms φαβ : Qα|Uα∩Uβ

→ Qβ|Uα∩Uβ
satisfying φαβφβγφγα = 1.

Then by cluching (Qα, fα), we can get a global trivialization (Q, f) ∈ Gn(U)
whose restriction to each Uα is (Qα, fα). Hence G(n,M) is a sheaf of groupoids.

Next, we cosider the conditions of a gerbe in [[3] 5.2.4. Definition, p.196]. For
the first condition (G1), assume that Gn(U) is non-empty. Let (Q, f) be an object
in Gn(U) and consider the automorphisms of (Q, f). If we think of Q first as Zn

bundle on YU then the group of all automorphisms is the group of all maps from
YU to Zn. However if we require that they also commute with f , they have to be
maps that are constant on the fiber of π : Y → M . Hence they are the group of
all maps from U into Zn. Therefore (G1) is satisfied.

For the second condition(G2), let (Q, f) and (R, g) be objects in Gn(U) and
let z ∈ U . We have Q ⊗ R∗ = π−1(T ) for some Zn bundle T over U . Choosing
a contractible neighborhood V of z, we can trivialize T and this induces an iso-
morphism from Q|V to R|V as required. Finally, the third condition (G3) that we
can cover M by open sets U such that Gn(U) is non-empty follows from the fact
that we can cover M by open sets over which Y has sections and hence we can
trvialize the bundle gerbe locally.

4 Chern class of G(n
√

,M)

We consider a bundle gerbe G(n,M) = (P, Y,M) where the fibered space Y is a
C× bundle Y = Y C× → M and the Zn groupoid over each fiber Ym

∼= C× (m ∈ M)
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is the gauge groupoid of the central extension

1 → Zn
ι→ C× ( )n

→ C× → 1.

We call the Zn bundle gerbe G(n,M) = (P, Y C× , M) an n root bundle gerbe
and denote it by G(n

√
, M). We define the first Chern class c1(G(n

√
,M)) by

c1(Y
C×) ∈ H2(M ;Z).

Theorem 4.1. For any n root bundle gerbe G(n
√

,M), we get

c(G(n
√

,M)) = c1(G(n
√

,M)) mod n.

Proof. For sufficiently fine open cover U = {Uα}, we choose coordinate transfor-
mations φαβ : Uα ∩ Uβ → C× of the local triviality {(Y C×)Uα}. φ = {φαβ} repre-
sents the element of the sheaf cohomology H1(M ;C×) corresponding to Y C× . In
the cohomology exact sequence with respect to the short exact sequence

0 → Z→ C exp·2πi→ C× → 1,

we have the connecting homomorphism ∂∗ : H1(M ;C×) → H2(M ;Z) and ∂∗[φ] =
c1(Y

C×). From the definition of ∂∗, one gets

c1(Y
C×) = [gαβγ]

which is regarded as a value of log(φβγφ
−1
αγφαβ) and is an integer, since φβγφ

−1
αγφαβ =

1. Let θαβ denote the least non-negative value of the imaginary part of logφαβ

and set σαβ = nθαβ mod n. By the exact sequence

1 → Zn
ι→ C× ( )n

→ C× → 1,

it follows that σαβ is an {R mod n} valued function and

σ−1
αγ σαβσβγ = log(φ−1

αγφαβφβγ) mod n

= log(φβγφ
−1
αγφαβ) mod n.

Therefore one can use σαβ to define the characteristic class c of Zn bundle gerbe
G(n

√
,M) in Theorem 2.1, that is,

c(G(n
√

,M)) = [log(φβγφ
−1
αγφαβ)] mod n

= ∂∗[φ] mod n

= c1(Y
C×) mod n.
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A. Weinstein [11] considered a square root
√

λ of a complex line bundle λ as Z2

gerbe to formulate the notion of Maslov gerbe. For each open set U ⊆ M ,
√

λ(U)
is the groupoid whose objects are pair (τ, ι) consisting of a line bundle τ and
an isomorphism ι from the tensor square τ 2 to the restriction λ|U . A morphism
from (τ, ι) to (τ ′, ι′) is a bundle isomorphism σ : τ → τ ′ such that ι′σ2ι−1 is the
identity automorphism of λ|U where σ2 is the tensor square of σ. Any two objects
in
√

λ(U) are isomorphic and the automorphism group of (τ, ι) may be identified
with the continuous (hence locally constant) functions on U with values in Z2.

Proposition 4.2. A 2 root bundle gerbe G(
√

,M) over M is a square root
√

λ of
a line bundle λ over M .

Proof. Let λ be the line bundle over M associated with the C× bundle Y = Y C× .
For an open set U ⊂ M , the objects of G2(U) with G(

√
,M) are the set of all

trivializations of the restriction of (P, Y, M) to U , that is, all pairs (τ, f) where
τ is a Z2 bundle over YU = π−1(U) ⊂ Y and f : π−1

1 (P )∗ ⊗ π−1
2 (P ) → τ |

Y
[2]
U

is

an isomorphism of Z2 bundle gerbes. G2(U) is either empty or a groupoid and is
non-empty if Y admits a section over U .

Since the trivialization (τ, f) of the (P, Y, M) to U means the compatibility of

P |
Y

[2]
U
→ Y

[2]
U with the exact sequence

1 → Z2
ι→ C× ( )2→ C× → 1,

that is, τ has a structure of Z2 central extension of C× bundle YU , we have an

isomorphism ι = f−1 : τ 2
∼=→ Y |U = λU . For another trivialization (τ ′, f ′) of the

restriction of (P, Y,M) to U , we get an isomorphism ι′ = f ′−1 : τ ′2
∼=→ λU and

a morphism between two objects (τ, f) and (τ ′, f ′) defines a bundle isomorphism

σ
∼=→ τ ′ such that ι′σ2ι−1 is the identity automorphism of λ|U . Therefore P is the

bundle gerbe
√

λ.

5 Projective Zn bundle gerbes

Let PU(n) denote the projective unitary group, which is isomorphic to U(n)/U(1).
Besides n root bundle gerbes in the previous section, we consider other Zn bundle
gerbe G(n,M) = (P, Y, M) where the fibered space Y is a principal PU(n) bundle
Y PU(n) → M and the gauge groupoid of the central extension

1 → Zn → SU(n)
ρ→ PU(n) → 1,
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where ρ : SU(n) ⊂ U(n) → PU(n) ∼= U(n)/U(1) is the quotient map. We call

the Zn bundle gerbes (P, Y PU(n),M) a projective Zn bundle gerbe and denote it
by G(PU(n),M).

In order to classify the projective Zn bundle gerbes, we use the notion of an
Azumaya bundle due to V. Mathai, R. B. Melrose and I. M. Singer [[9] p.344],
and P. Donovan and M. Karoubi [[4] p.12]. An Azumaya algebra of rank n is
an algebra isomorphic to to the algebra of n × n matrices M(n,C), (although,
in general, the Azumaya algebra is defined as a central separable algebra over
a commutative ring in [2]). An Azumaya bundle over a manifold M is a vector
bundle with fibers which are Azumaya algebras and which has local trivialization
reducing these algebras to M(n,C).

Proposition 5.1. An Azumaya bundle A of rank n over a manifold M defines a
Zn bundle gerbe G(PU(n),M) and conversely.

Proof. The Azumaya algebra M(n,C) is the algebra End(Cn) of linear endomor-
phisms. Since the C algebra M(n,C) has the C automorphism group PGL(n,C) =
PU(n), a PU(n) bundle Y PU(n)(A) is associated to A and the local trivializations
give local lifts of coordinate transformations to SU(n) with respect to the projec-
tion ρ:

1 → Zn → SU(n)
ρ→ PU(n) → 1

↓ i ↓ ‖
1 → U(1) → U(n)

ρ→ PU(n) → 1.

Hence A determines a family of Zn groupoids over PU(n) bundle parametrized by
the manifold M , which gives exactly a Zn bundle P over (Y PU(n)(A))[2]. Therefore
A defines a projective Zn bundle gerbe

G(PU(n),M) = (P, Y PU(n)(A),M)

over M . The converse follows almost directly.

Remark 5.2. A projective vector bundle data of a full trivialization of the Azu-
maya bundle A of rank n over M [[9] p.350] defines a projective Zn bundle gerbe
and conversely.

Two Azumaya bundles E and F over M are said to be equivalent if there are
vector bundles E and F over M such that E⊗End(E) is isomorphic to F⊗End(F ).
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All equivalence classes of Azumaya bundles over M is called the Brauer group of
M and is denoted by Br(M). By the way to prove Serre’s theorem [[4] Theorem 8,
p.12], we have the isomorphism Br(M) ∼= tor(H3(M ;Z)). Any nonzero element
of Tor(H3(M ;Z),Zn) ⊂ tor(H3(M ;Z)) is represented by an Azumaya bundle
of a rank n′ dividing n and so it represented by an Azumaya bundle of rank
n. Let Br(n,M) denote the set of all equivalence classes of Azumaya bundles
of rank n. Since Br(n,M) corresponds to Tor(H3(M ;Z),Zn) under the Serre’s
isomorphism, it is a subgroup of Br(M). From Proposition 5.1 it follows that
Br(n,M) = {GS(PU(n),M)}.

Let ∂∗SU(n) : H1(M ; SU(n)) → H2(M ;Zn) denote the connecting homomor-
phism in the sheaf cohomology exact sequence with respect to the short exact
sequence 1 → Zn → SU(n)

ρ→ PU(n) → 1. By the definition of the characteris-
tic homomorphism cS : {GS(PU(n), M)} → H2(M ;Zn), we have a commutative
diagram

B(n,M) = {GS(PU(n),M)} cS−→ H2(M ;Zn)
q↑ ∂∗

SU(n)
↗

H1(M ; PU(n))

where q denotes the quotient map by the equivalence class of Azumaya bundles.

From the commutative diagram of short exact sequences,

0 → Z→ Z→ Zn → 0
n· ↓ ∩ ∩

0 → Z→ R→ S1 → 0,

and by identifying S1 with U(1), the diagram,

H2(M ;Zn)
i∗ ↓ ↘ ∂∗n

H2(M ; U(1))
∂∗−→ H3(M ;Z)

is commutative, where ∂∗ and ∂∗n is the connectiong homomorphism with respect
to the upper and the lower short exact sequence. Now, we examine the surjectivity
of cS.

Theorem 5.3. Suppose that M is a manifold. Then the characteristic homomor-
phism restricted to {GS(PU(n),M)} is an isomorphism onto Tor(H3(M ;Z),Zn).
Moreover the cS is an isomorphism {GS(n,M)} ∼= H2(M ;Zn).
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Proof. From the commutative short exact sequences

1 → Zn → SU(n)
ρ→ PU(n) → 1

↓ i ↓ ‖
1 → U(1) → U(n)

ρ→ PU(n) → 1,

it follows the commutative diagram

B(n,M) = {GS(PU(n),M)} cS−→ H2(M ;Zn)

q↑ ∂∗
SU(n)

↗ i∗↓

H1(M ; PU(n))
∂∗

U(n)−→ H2(M ; U(1)).

by making use of Proposition 5.1, where ∂∗U(n) is the connecting homomorphism
with respect to the lower short exact exact sequence. Since we have

∂∗ncSq = ∂∗n∂
∗
SU(n) = ∂∗i∗∂∗SU(n)

= ∂∗∂∗U(n),

the homomorphism ∂∗ncS gives the Serre’s isomorphism,

{GS(PU(n),M)} ∼=→ Tor(H3(M ;Z),Zn).

The second statement is proved as follows. It is well known that for any
element u ∈ H2(M ;Z) ⊗ Zn, one can find a C× bundle Y C× over M such that
u = c1(Y

C×) mod n. Let F be a Zn bundle over C× and GF the gauge groupoid of
F . For a sufficiently fine open cover of M , one can construct naturally a Zn bundle
gerbe G(n

√
,M) = (P, Y C× ,M) with u = cS(GS(n

√
,M)). Therefore, we have

cS{GS(n
√

,M)} = H2(M ;Z) ⊗ Zn by Theorem 4.1. By the universal coefficient
formula with respect to Zn, it follows that

cS({GS(n
√

,M)} · {GS(PU(n),M)})
= H2(M ;Z)⊗ Zn ⊕ Tor(H3(M ;Z),Zn)

= H2(M ;Zn).

Hence the characteristic homomorphism cS : {GS(n,M)} → H2(M ;Zn) is surjec-
tive. Since the homomorphism cS is injective by Corollary 2.2, it is an isomor-
phism.

From Theorem 5.3, we obtain immediately,

Corollary 5.4. Any Zn bundle gerbe G(n,M) over a manifold M is Morita equiv-
alent to a product of an n root bundle gerbe G(n

√
,M) and a projective Zn bundle

gerbe G(PU(n),M).
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6 Bundle gerbes for finitely generated abelian

groups

For any abelian group D, D bundle gerbe G(D,M) = (PD, Y, M) over a manifold
M is defined by the precisely parallel argument to G(n,M), where Y → M is
a fibered space and PD is a D bundle over Y [2]. In the direct way as Section
2, we obtain a product of any two D bundle gerbes, the characteristic map c :
{G(D,M)} → H2(M ; D) and stable equivalence classes GS(D,M) of G(D,M),
since there the argument uses the commutativity of Zn essentially. The D bundle
gerbe is a gerbe in the sense of [3] and [5] as in Section 3. The characteristic
map c induces an injective homomorphism cS : {GS(D, M)} → H2(M ; D), which
extends that in Section 2.

We consider a Z bundle gerbe G(∞,M) = (P∞, Y C× ,M) where Y C× is the
gauge groupoid of the central extension

0 → Z→ C exp·2πi→ C× → 1.

Then the Chern class c1(G(∞,M)) = c1(Y
C×) is well defined and the following

theorem is obtained by a more direct proof without the reduction modulo n in
Theorem 4.1.

Proposition 6.1. For any Z bundle gerbe G(∞,M), we have c(G(∞,M)) =
c1(G(∞, M)), and cS is an isomorphism {GS(∞,M)} ∼= H2(M ;Z), that is, the
equivalence classes of Z bundle gerbes correspond to C× bundle over M in one-
to-one way.

By the fundamental theorem of finitely generated abelian group, D is a direct
product of a finite number of cyclic groups. By making use of the universal
coefficient formula, Theorem 5.3 and Proposition 6.1 give rise to

Corollary 6.2. Suppose that D is a finitely generated abelian group and M is a
manifold. Then the group {GS(D, M)} of Morita equivalence classes of D bundle
gerbes over M is isomorphic to H2(M ; D) by the characteristic map cS.
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On the integration of LA-groupoids and duality for Poisson groupoids 1 2

by Luca Stefanini3

Abstract

In this note a functorial approach to the integration problem of an LA-
groupoid to a double Lie groupoid is discussed. To do that, we study
the notions of fibered products in the categories of Lie groupoids and Lie
algebroids, giving necessary and sufficient conditions for the existence of
such. In particular, it turns out, that the fibered product of Lie algebroids
along integrable morphisms is always integrable by a fibered product of
Lie groupoids. We show that to every LA-groupoid with integrable top
structure one can associate a differentiable graph in the category of Lie
groupoids, which is an integrating double Lie groupoid, whenever some
lifting conditions for suitable Lie algebroid homotopies are fulfilled; the
result specializes to the case of a Poisson groupoid, yielding a symplectic
double groupoid, provided our conditions on the associated LA-groupoid
are satisfied.

Introduction

In recent years, fundamental questions in Lie theory for Lie algebroids and Lie
groupoids have been answered; namely, optimal generalizations of Lie’s theorems
have been discovered. Examples of non-integrable Lie algebroids already appeared
in [AM] and the problem to find general integrability conditions has been standing
for a long time.
The −quite non-trivial− theory of morphisms of Lie algebroids was developed by
Higgins and Mackenzie in [HM]. Later on Mackenzie and Xu proved [MX2] that
morphisms of integrable Lie algebroids are integrable to morphisms of Lie groupo-
ids, provided the domain groupoid has 1-connected source fibres. An independent
proof by Moerdijk and Mrčun appeared in [MM]. In the same paper the authors
also show that to every source connected Lie groupoid one can associate a unique
source 1-connected “cover” with the same Lie algebroid; moreover they prove that
every Lie subalgebroid of an integrable Lie algebroid A is integrable by an (only)

1Received: December 15, 2006
22000 Mathematics Subject Classification: Primary 58H05; Secondary 17B66, 18D05, 22A22
3The author acknowledges support by SNF-grant Nr.20-113439
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immersed subgroupoid of the source 1-connected integration of A. The source 1-
connected cover of a source connected Lie groupoid G is obtained as the quotient
of the monodromy groupoid Mon(G, s) associated with the source foliation on G
with respect to the natural action by right translation of G itself. It turns out
[CF1], that the Lie groupoid Mon(G, s)/G can be equivalently described as the quo-
tient of the so called G-paths, paths along the source fibers starting from the base
manifold, by homotopy within the source fibers, relative to the end points. Crainic
and Fernandes showed that both the notions of G-paths and their homotopy can
be characterized in terms of the Lie algebroid A of G; namely, G-paths are in
bijective correspondence with A-paths, i.e. morphisms of Lie algebroids TI → A,
and G-paths are homotopic iff the corresponding A-paths are A-homotopic, be-
ing A-homotopopies morphisms of Lie algebroids TI×2 → A, satisfying suitable
boundary conditions. The quotient W(A) := {A-paths}/A-homotopy, a.k.a. the
Weinstein groupoid, carries a natural groupoid structure, induced, roughly, by
concatenation of paths; it is always a topological groupoid and Crainic and Fer-
nandes finally delivered a necessary and sufficient integrability condition for Lie
algebroids, which is to be understood as the obstruction to put a smooth structure
on the associated Weinstein groupoid.
The construction of the Weinstein groupoid was anticipated by Cattaneo and
Felder [CF] in the special case of the Lie algebroid of a Poisson manifold. Their
approach involves the symplectic reduction of the phase space of the Poisson sigma
model and yields the symplectic groupoid of the target Poisson manifold, in the
integrable case.

In this paper we study (part of) the categorified version of this story. Ehres-
mann’s categorification of a groupoid is a groupoid object in the category of grou-
poids; this is a symmetric notion and it makes sense to regard such a structure as
a “double groupoid”. A double Lie groupoid is, essentially, a “Lie groupoid in the
category of Lie groupoids”; one can apply the Lie functor to the object of a double
Lie groupoid, to obtain an LA-groupoid, i.e. a “Lie groupoid in the category of
Lie algebroids”. The application of the Lie functor can still be iterated; the result,
a double Lie algebroid, is the best approximation to what one would mean as a
“Lie algebroid in the category of Lie algebroids”. Such double structures do arise
in nature, especially from Poisson geometry and the theory of Poisson actions.

After reviewing the main definitions and known integrability results related to
Lie bialgebroids and Poisson groupoids (§1), we address the integration problem
of an LA-groupoid to a double Lie groupoid. In §2 we study the fibred products
of Lie algebroids and Lie groupoids. We show that, whenever a fibered product
of Lie algebroids exists as a vector bundle, it carries a unique natural Lie alge-
broid structure; the analogous property does not hold for Lie groupoids. We find,
however a necessary and sufficient transversality condition for fibered products of
Lie groupoids to stay in the category. We develop our integration approach in
§3, also considering the case of the LA-groupoid of a Poisson groupoid in relation
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with duality issues (§4). We introduce differentiable graphs with structure, Lie
groupoids “without a multiplication”, and show that an LA-groupoid with inte-
grable top Lie algebroid is always integrable to an invertible unital graph in the
category of Lie groupoids; moreover, we prove a natural integrability result for
fibered products of integrable Lie algebroids. As a consequence the integrating
graph of an LA-groupoid can be endowed with a further compatible multiplica-
tion making it a double Lie groupoid, under some connectivity assumptions on its
second and third nerve. Surprisingly, the connectivity assumptions are implied by
some suitable lifting conditions for Lie algebroid paths and Lie algebroid homo-
topies, depending only on the original LA-groupoid. We shall remark, however,
that our requirements are far from being necessary integrability conditions and
appear quite restrictive.
Lastly, we comment on an alternative approach to the −2 steps in 1− integration
of a Lie bialgebroid to a symplectic double groupoid, within the framework of
symplectic reduction of the Courant sigma model.

Notations and conventions

We denote with s and t the source and target maps of a Lie groupoid, with ε the
unit section, with ι the inversion and with µ the partial multiplication. The anchor
of a Lie algebroid is typically denoted with ρ. Nowhere in this paper P denotes the
opposite Poisson structure on a Poisson manifold P . “Fibered product” is meant
as a categorical pullback; with pullback it is meant “pullback along a map”, such
as the vector bundle pullback. We shall denote with Γ(f) the graph of a map
f : M → N and regard it as a fibered product M f × N ≡ M f × idN

N . If
two smooth maps f1,2 : M1,2 → N are transversal, we shall write f1 t f2. For
two vector bundle maps φ1,2 : E1,2 → F to be transversal, φ1 ttt φ2, means that
φ1 and φ2 are transversal as smooth maps, so are the corresponding base maps
f1,2 : M1,2 → N and φ1 − φ2 : (E1 × E2)|M1

f1
×f2

M2 → F has maximal rank, so

that the fibered product E1
φ1× φ2 E2 carries a vector bundle structure over the

fibered product M1
f1× f2 M2.
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1 LA-groupoids, (symplectic) double Lie grou-

poids and Poisson groupoids

A double Lie groupoid is a Lie groupoid object in the category of Lie groupoids.

Definition 1.1 ([M1]). A double Lie groupoid D := (D,H,V ,M)

D V

H M

// //

²² ²² ²²²²
////

is a groupoid object in the category of groupoids (i.e. a double groupoid in the
sense of Ehresmann), such that D→→V , D→→H, H→→M , V →→M are Lie groupoids
and the double source map

S .
= (sH, sV ) : D → H sh

× sv V
is submersive4.

The definition is symmetric and the total space of a double Lie groupoid can
be regarded as a groupoid object either horizontally or vertically; the groupoid
vertical, resp. horizontal, structural maps (unit section, source, target, inversion
and multiplication) are morphisms of Lie groupoids for the vertical, resp. hor-
izontal, structures. Note that the submersivity condition on the double source
map makes the domains of the top multiplications Lie groupoids (see proposition
(2.1) for a justification of this fact).

Applying the Lie functor horizontally, or vertically, yields an LA-groupoid.

Definition 1.2 ([M1]). An LA-groupoid Ω := (Ω, A,G, M)

Ω G

A M

b
²² ²²

//

//
²²²²

is a groupoid object in the category of Lie algebroids, such that Ω→→A and G→→M
are Lie groupoids and the double source map

$
.
= (ŝ, Pr) : Ω → A pr× s G

is a surjective submersion.

4In [M1] the double source map is required to be also surjective; this condition does not
really play a role in the study of the internal structure of a double Lie groupoid and the descent
to double Lie algebroids. Moreover, there are interesting examples, such as Lu and Weinstein’s
double of a Poisson group (1.10) for instance, which do not fulfill the double source surjectivity
condition.
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An LA-groupoid is a double groupoid for the horizontal additive groupoids
and the double source map should be understood with respect to this structure.
As a direct consequence from the definition, the vector bundle projection, zero
section, fibrewise addition and scalar multiplication of Ω → G are morphisms of
Lie groupoids over the corresponding maps of A → M . Note that there is no
natural way of characterizing the Lie algebroid bracket of Ω as a morphism of Lie
algebroids over the bracket of A. On the other hand, an LA-groupoid is indeed a
Lie groupoid in the category of Lie algebroids.

Example 1.3. The typical examples are: for any Lie groupoid G→→M

G × G G

M ×M M

////

²² ²² ²²²²
////

TG G

TM M
²² ²²

//

//
²²²²

,

where the top vertical groupoid is a direct product and the horizontal groupoids
are pair groupoids, in the first case, while in the second, the top groupoid is the
tangent prolongation (each structural map is the tangent of the corresponding
map of G).

Applying the Lie functor once more yields a double Lie algebroid (See [M1, M7]
for a definition). The notions of morphisms and sub-objects of double structures
are the obvious ones.

Lie theory “from double Lie groupoids to double Lie algebroids” has been de-
veloped to a satisfactory extent in recent years by Mackenzie [M1]-[M5], [M7]. Inte-
grability results for double Lie algebroids to LA-groupoids and for LA-groupoids
to double Lie groupoids are known only for a restricted class of examples arising
from Poisson geometry, the main ones we are about to sketch.

Definition 1.4 ([W]). A Poisson groupoid is a Lie Groupoid P→→M endowed with
a compatible Poisson structure Π ∈ X2(P), i.e. such that the graph Γ(µ) ⊂ P×3 of
the groupoid multiplication µ is coisotropic with respect to the Poisson structure
Π× Π×−Π.

A Poisson groupoid with a non-degenerate Poisson structure is a symplectic
groupoid in the usual sense (i.e. Γ(µ) is Lagrangian, by counting dimensions). For
any Poisson groupoid (P , Π)→→M [W]:

(i) The unit section ε : M ↪→ P is a closed coisotropic embedding;

(ii) The inversion map ι : P → P is an anti-Poisson diffeomorphism;

(iii) The source invariant functions and the target invariant functions define com-
muting anti-isomorphic Poisson subalgebras of C∞(P).

As an easy consequence of property (iii) above, the base manifold of a Poisson
groupoid carries a unique Poisson structure making the source map Poisson and
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the target map anti-Poisson. A symplectic groupoid provides a symplectic realiza-
tion of the Poisson structure induced on the base (see, for example, [CDW, CF2]
for an account on symplectic realizations and symplectic groupoids).

It turns out [MX1], that a Lie groupoid P→→M with a Poisson structure Π is
a Poisson groupoid iff

(1.1)

T ∗P TP

A∗ TM
²² ²²

Π]
//

//
²²²²

is a morphism of groupoids.

The base map in the above diagram is the restriction of the Poisson anchor to
N∗M = AnnT ∗PTM , which is to be canonically identified with the dual bundle to
the Lie algebroid A of P . The cotangent prolongation groupoid [CDW] T ∗G→→A∗,
can be defined for any Lie groupoid G→→M and it is the symplectic groupoid
of the fibrewise linear Poisson structure induced from the Lie algebroid A of G
on A∗. If P is a Poisson groupoid A∗, as the conormal bundle to a coisotropic
submanifold, carries a Lie algebroid structure over M and

(1.2)

T ∗P P

A∗ M
²² ²²

//

//
²²²²

is an LA-groupoid.

In fact (1.1) is the compatibility condition between horizontal anchors and vertical
Lie groupoids. The compatibility with the Lie algebroid brackets can be shown
as a consequence of the duality between PVB-groupoids and LA-groupoids (see
[M2] for details).

Recall that, if (P , Π)→→M is a Poisson groupoid, (A, A∗) is a Lie bialgebroid
[MX1]; that is, the Lie algebroid structures on A and A∗ are compatible, in the
sense that [K] (Γ(∧•A∗), ∧ , dA , [ , ]A∗) is a differential Gerstenhaber algebra for
the Lie algebroid differential dA induced by A and the graded Lie bracket [ , ]A∗
on Γ(∧•A∗)[1] induced by A∗. The notion of Lie bialgebroid is self dual ((A,A∗) is
a Lie bialgebroid iff so is (A∗, A)) and the flip (A∗, Ā) of a Lie bialgebroid (invert
signs of the anchor and bracket of A) is also a Lie bialgebroid. This leads to a
notion of duality for Poisson groupoids, essentially introduced in [W].

Definition 1.5 ([M2]). Poisson groupoids (P±, Π±)→→M are in weak duality if the
Lie bialgebroid of P+ is isomorphic to the flip of the Lie bialgebroid of P−.

There is an important integrability result for Lie bialgebroids.

Theorem 1.6 ([MX2]). For any Lie bialgebroid (A,A∗) → M , with A integrable,
there exists a unique Poisson structure Π ∈ X2(P) on the source 1-connected Lie
groupoid P→→M of A, such that

1. (P , Π)→→M is a Poisson groupoid,

2. The Lie algebroid on A∗ coincides with that induced by Π.
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Last result, in view of [M2, M3, M7], can be interpreted as an integrability result
for the cotangent double (Lie algebroid) of a Lie bialgebroid

T ∗A∗ A

A∗ M
²²

//

//
²²

to the LA-groupoid (1.2) of the corresponding source 1-connected Poisson group-
oid. See also [M6] for another example of an integrable double Lie algebroid arising
from the Poisson action of a Poisson group.
An easy consequence of theorem (1.6) is the following.

Lemma 1.7. Every integrable Poisson groupoid (P , Π)→→M has a unique source
1-connected weak dual Poisson groupoid (P , Π)→→M .

Proof. Recall from [MM] that a Lie subalgebroid of an integrable Lie algebroid is
integrable. Since P is an integrable Poisson manifold T ∗P is an integrable Lie
algebroid and so is A∗ (embed A∗ in T ∗P using the unit section of the cotangent
prolongation groupoid). Apply theorem (1.6) to the flip of the Lie bialgebroid of
P .

A stronger notion of duality for Poisson groupoids arises from double groupo-
ids.

Definition 1.8 ([M2]). A symplectic double groupoid is a double Lie groupoid,
whose total space is endowed with a symplectic form, which is compatible with
the top horizontal and vertical Lie groupoids.

It follows [M2], that the Poisson structures on the total spaces of the side
groupoids induced by the top horizontal and vertical groupoids are in weak duality.
This motivates the following definition.

Definition 1.9.5 Two Poisson groupoids (P±, Π±)→→M are in strong duality if
there exists a symplectic double groupoid

S P+

P− M

// //

²² ²² ²²²²
////

with the given groupoids as side structures, such that the symplectic form induces
the given Poisson structures. The double of an integrable Poisson groupoid is a
symplectic double groupoid S realizing a strong duality of P and its weak dual
Poisson groupoid P .

5This notion was suggested to the author by K. Mackenzie in a private discussion (2005).
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Thus, strongly dual Poisson groupoids admit a simultaneous integration (and
symplectic realization); the natural questions to answer are:

· Do Poisson groupoids integrate to symplectic double groupoids?

And, more generally,

· Does weak duality imply strong duality for integrable Poisson groupoids?

A positive answer to the first question was given in [LW] by Lu and Weinstein in
the case of integrable Poisson groups, and [LP] by Li and Parmentier in the case
of a class of coboundary dynamical Poisson groupoids.

Example 1.10. [LW] Let (g, g∗) be the tangent Lie bialgebra of a 1-connected
Poisson group G and G be the weak dual. The sum d = g⊕ g∗ carries a natural
Lie algebra structure, obtained by a double twist of the brackets on g and g∗, the
Drinfel’d double of (g, g∗); let D be the 1-connected integration of such. Denote
with λ : G ↪→ D, resp. ρ : G ↪→ D the integrations of g ↪→ d, resp. g∗ ↪→ d.
One can show that D has a compatible Poisson structure πD, which happens to
be non-degenerate on the submanifold of elements d, admitting a decomposition
d = λ(g+)ρ(g+) = ρ(g−)λ(g−), g± ∈ G and g± ∈ G. Moreover there is also a
natural double Lie groupoid

D G

G •

////

²² ²² ²²²²
////

D = G×G×G×G .

It turns out that the double subgroupoid, whose total space is S = {(g+, g+, g−, g−)|
λ(g+)ρ(g+) = ρ(g−)λ(g−)} carries a compatible symplectic form, inducing the Pois-
son structures on G and G, which is the inverse of the pullback of πD, under the
natural local diffeomorphism S → D. Note that S is, in general, neither vertically,
nor horizontally source (1-)connected.

2 Fibered products in the categories of Lie al-

gebroids and Lie groupoids

Recall from [HM] that, given Lie algebroids A1,2 → M1,2, with anchors ρ1,2 and
brackets [·, ·]1,2 a morphism of Lie algebroids is a smooth vector bundle map
ϕ : A1 → A2 over a base map f : M1 → M2, satisfying the natural anchor
compatibility condition, ρ2 ◦φ = df ◦ ρ1, and a bracket compatibility condition.
The bracket compatibility can be expressed in a few equivalent ways, using decom-
positions of sections or connections: pick a Koszul connection ∇ for A2 → M2,
denote with f+++∇ the induced connection on the pullback bundle f+++A2 → M1

and with ϕ! the bundle map A1 → f+++A2 induced by ϕ, the condition is

ϕ![a, b]1 = f+++∇ρ1(a)ϕ
!b− f+++∇ρ1(b)ϕ

!a− f+++τ∇(ϕ!a, ϕ!b) , a, b ∈ Γ(A1) ,
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where f+++τ∇ is the pullback of the torsion tensor of ∇. With the above definition
one can show that there is a category of Lie algebroids, with direct products and
pullbacks (under natural transversality conditions). More invariantly, a Lie alge-
broid structure on a vector bundle A → M is equivalent to a differential on the
graded algebra C•(A) := (Γ(∧•A∗),∧) [V]; a vector bundle map φ : A1 → A2 is
then a morphism of Lie algebroids iff [K] the induced map C•(A2) → C•(A1) is a
chain map.
A Lie subalgebroid B of A is a vector subbundle such that the inclusion B ↪→ A is
a morphism of Lie algebroids.
The Lie algebroid of a Lie groupoid G→→M is the vector bundle T s

MG (the restric-
tion of the kernel of the tangent source map to the base manifold) endowed with a
bracket induced from that of right invariant sections of T sG. Similarly restricting
the tangent map of a morphism of Lie groupoids G1 → G2 to T s1

M1G1 → T s2

M2G2,
one obtains a morphism of Lie algebroids. That is, there exists a Lie functor from
the category of Lie groupoids to that of Lie algebroids.
Moreover the Lie functor preserves direct products and pullbacks; note, however,
that fibered products of Lie groupoids do not always exist.

Proposition 2.1. 6 Consider morphisms of Lie groupoids ϕ1,2 : G1,2 → H over
f1,2 : M1,2 → N , such that ϕ1 t ϕ2 and f1 t f2. Then, the manifold fibered product
G1

ϕ1×ϕ2 G2 exists and the natural (smooth ) groupoid structure over M1
f1×f2 M2

induced from the direct product G1 × G2 is that of a Lie groupoid iff the source
transversality condition

(2.1) dϕ1T
s1
g1
G1 + dϕ2T

s2
g2
G2 = T s

hH , ϕ1(g1) = h = ϕ2(g2)

is satisfied for all (g1, g2) ∈ G1
ϕ1 × ϕ2 G2. In this case, G1

ϕ1 × ϕ2 G2 is a fibered
product in the category of Lie groupoids.

Proof. We have to prove that the source map of G ≡ G1
ϕ1 × ϕ2 G2 → M ≡

M1
f1 × f2 M2 is submersive iff (2.1) holds; universality is then manifest. Let

q1,2 = s1,2(g1,2), q = s(h), for any (g1, g2) ∈ G, h = ϕ1,2(g1,2), applying the snake
lemma to the exact commuting diagram

0 T s1
g1
G1 ⊕ T s2

g2
G2 Tg1G1 ⊕ Tg2G2 Tq1M

1 ⊕ Tq2M
2 0

0 T s
hH ThH TqN 0

Φ12

²²
dϕ1−dϕ2

²²
df1−df2

²²

// // //
ds1 × ds2

//

// //
ds

// //

yields a connecting arrow ∂ and a long exact sequence

0 ker Φ12 T(g1,g2)G T(q1,q2)M coker Φ12 0// // ds12 // ∂ // // ,

where Φ12 := (dϕ1 − dϕ2)|T s1
g1
G1⊕T

s2
g2
G2 and s12 = (s1 × s2)|G. The result follows.

6Stronger sufficient conditions for the existence of fibred products of Lie groupoids appeared
in [Mb].
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Generalizing slightly the constructions of [HM] allows to introduce abstract
fibered products of Lie algebroids7. Recall from [HM] that the pullback algebroid,
f++++++A → N , along a smooth map f : N → M of a Lie algebroid A → M , with
anchor ρ, is defined whenever df − ρ! : TN ⊕ f+++A → TM has constant rank (in
particular, when f is submersive); the total space of f++++++A is then ker (df−ρ!), the
anchor, denoted with ρ++++++, being the first projection (see [HM, Mb] for a description
of the bracket). Pullback algebroids satisfy the following important universal
property.

Proposition 2.2 ([HM]). Let A(′) → M (′) be Lie algebroids and f : N → M
a smooth map, such that the pullback f++++++A exists. For any morphism of Lie
algebroids φ : A′ → A over g : M ′ → M , such that there is a smooth factorization
g = f ◦h, for some h : M ′ → N , there exists a unique morphism ψ : A′ → f++++++A,
such that φ = f++++++ ◦ ψ, for the natural morphism (a.k.a. the inductor) f++++++ :
f++++++A → A.

Next, consider Lie algebroids A1, A2 and B over the same base M ; given
morphisms of Lie algebroids φ1,2 : A1,2 → B over the identity, such that the
fibered product A1

φ1×φ2 A2 is a vector bundle, it is possible to introduce the fibered
product Lie algebroid (over B in this case), for the vector bundle structure over M .
The anchor is ρ(a1⊕a2) = ρB◦φ1(a1) = ρB◦φ2(a2), for any a1⊕a2 ∈ A1 φ1×φ2 A2;
the bracket is defined componentwise:

[a1 ⊕ a2, b1 ⊕ b2] = [a1, b1]⊕ [a2, b2] , a1 ⊕ a2, b1 ⊕ b2 ∈ Γ(M, A1 φ1×φ2 A2) .

Last construction is a straightforward generalization of the product of Lie alge-
broids over the same base in [HM], which is recovered replacing B with TM and
φ1,2 with ρ1,2.
Given Lie algebroids A1,2 → M1,2, denote with M12 the direct product M1 ×M2

and with pr1,2 the projections onto M1,2. Since the pullback algebroids pr++++++
1,2 A1,2

always exist and the fibered product of manifolds pr++++++
1 A1

ρ1
++++++
×ρ2

++++++
pr++++++

2 A2 is to be

identified with the vector bundle A1 × A2 → M1 ×M2, there is always a fibered
product Lie algebroid over TM12, the direct product Lie algebroid (denoted simply
as A1 ×A2) of A1 and A2; it is straightforward to check that it is indeed a direct
product in the category of Lie algebroids.

Proposition 2.3. Consider morphisms of Lie algebroids φ1,2 : A1,2 → B over
f1,2 : M1,2 → N , such that φ1 ttt φ2. Then, the vector bundle fibered product
A1

φ1× φ2 A2 → M1
f1× f2 M2 carries a unique Lie algebroid structure making it

a Lie subalgebroid of the direct product A1 × A2, thus a fibered product in the
category of Lie algebroids.

7The existence of fibered product of Lie algebroids under the natural transversality conditions
was stated without proof in [HM].
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Proof. Denote with M the fibered product M1
f1×f2 M2 and with p1,2 : M → M1,2

the restrictions of the projections on the first and second component. Transver-
sality for f1 and f2 implies δ := (f1 × f2)|M = p1,2 ◦ f1,2 being submersive to the
diagonal ∆N ; then, upon identifying N with ∆N , B can be pulled back to a Lie
algebroid over M . The pullback Lie algebroids p++++++

1,2 A1,2 → M also exist and there

is a fibered product Lie algebroid p++++++
1 A1

ψ1×ψ2 p++++++
2 A2 over δ++++++B, where the mor-

phisms ψ1,2 are the unique obtained factorizing the compositions of φ1,2 with the
inductors p++++++

1,2 A1,2 → A1,2 along the identity of M :

M

p++++++
1,2 A1,2

A1,2 B

M1,2 N

M

δ++++++B

ψ1,2

**UUUUUUUUUUUUUUUUUUU
//

²²
//

//

²²

φ1,2 //

//
²²

²²

^^========
UUUUUUUUUUUUUUUUUUUUUUU

UUUUUUUUUUUUUUUUUUUUUUU

^^=======
.

Note that A1
φ1×φ2 A2 and p++++++

1 A1
ψ1×ψ2 p++++++

2 A2 coincide and are smooth manifolds
due to transversality of φ1,2, thus A1

φ1× φ2 A2 inherits a Lie algebroid structure
from p++++++

1 A1
ψ1×ψ2 p++++++

2 A2. Next we show that there exists a unique morphism of
Lie algebroids χ : A1

φ1×φ2 A2 → A1 × A2 filling the diagram

A1
φ1×φ2 A2

A1 × A2

p++++++
2 A2

pr++++++
2 A2

p++++++
1 A1

pr++++++
1 A1

TM

TM12
²²

//

//
²²

χ **UUUUUUUUUUUU χ2

**TTTTTTTTTTTTT
//

χ1 **UUUUUUUUUUUUUUU

²²
º w

**TTTTTTTTTTTTTTT
²²

//

.

The maps to TM and TM12 are anchors and χ1,2

p++++++
1,2 A1,2

A1,2

M M1,2

M12

pr++++++
1,2 A1,2

χ1,2

))SSSSSSSSSSSSS

²²

//

//
²²

²²

^^=======

¹ v

))SSSSSSSSSSSSSSSSSS

^^======

are the unique morphisms factorizing the inductors of p++++++
1,2 A1,2 through the induc-

tors of pr++++++
1,2 A1,2 along the natural inclusion M ↪→ M12 of the fibered product base

manifold. From the anchor compatibility condition for χ1,2 and the commutativity
of last diagram, χ1,2 must be the canonical inclusions. Moreover, post compos-
ing χ1,2 with the inductors pr++++++

1,2 A1,2 → A1,2, yields morphisms of Lie algebroids
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p++++++
1,2 A1,2 → A1,2; by universality of A1×A2, χ exists and is unique. Thus, χ is the

canonical inclusion, due to the commutativity of the defining diagram. To check
universality of A1

φ1×φ2 A2 is now straightforward.

It is then clear that the Lie algebroid of a fibered product G1
ϕ1 × ϕ2 G2 Lie

groupoid coincides, as a vector bundle, with the fibered product A1
φ1×φ2 A2 for

the induced morphisms φ1,2 (the existence of such being assured from the source
transversality condition: A1

φ1×φ2 A2 = kerM1
f1
×f2

M2(φ1 − φ2), where the bundle

map (φ1 − φ2) : A1 × A2|M1
f1
×f2

M2 → B has maximal rank); the induced Lie

algebroid structure is then that of a fibered product, being G1
ϕ1×ϕ2 G2 ⊂ G1×G2

a Lie subgroupoid, by uniqueness.

Example 2.4. Consider a Lie algebroid A → M and a smooth map f : N →
M . The requirement d f ttt ρ is precisely the transversality condition for the
pullback algebroid f++++++A to exist; in this case the fibred product Lie algebroid
TN d f× ρ A → Γ(f) also exists and coincides with f++++++A up to the identification
Γ(f) ' N .

3 A functorial approach to the integration of

LA-groupoids

Following Pradines [P], a differentiable graph is a pair of manifolds (Γ,M), endowed
with surjective submersions α, β : Γ → M . We shall say that a graph is unital,
if there is an injective immersion ε : M → Γ, for which both α and β are left
inverses, resp. invertible, if there is a diffeomorphism ι : Γ → Γ, such that ι2 = idΓ,
α ◦ ι = β and ι ◦ ε = ε. Namely, an invertible unital graph is a “Lie groupoid
without a multiplication”. For any differentiable graph, each nerve

Γ(n) = Γ α×β◦p1 Γ(n−1) ⊂ Γ×n , n > 1 ,

is a smooth submanifold (conventionally, Γ(1) = Γ and Γ(0) = M).
Let (Ω, A;G,M) be an LA-groupoid; if Ω → G is integrable, so is the Lie

subalgebroid A → M . Denote with Ξ→→G and A→→M the source 1-connected
integrations. The top groupoid structural maps ŝ, t̂ : Ω → A, ε̂ : A → Ω and
ι̂ : Ω → Ω are morphisms of Lie algebroids and integrate uniquely to morphisms
of Lie groupoids sV , tV : Ξ → A, εV : A → Ξ and ιV : Ξ → Ξ. The compatibility
conditions ŝ ◦ ε̂ = idA, t̂ ◦ ε̂ = idA, ŝ ◦ ι̂ = t̂, ι̂ ◦ ι̂ = idΩ and ι̂◦ ε̂ = ε̂ are diagrams
of Lie algebroid morphisms and integrate to analogous relations for ιV , sV , tV and
εV . Then ιV is a diffeomorphism (being the inverse to itself), εV is injective (it
has left inverses), sV and tV are surjective (being left inverses to εV ). Actually, εV

is an immersion, sV and tV are submersive on an open neighbourhood of G; this
can be seen taking the tangent diagrams to sV ◦ εV = idG and tV ◦ εV = idG. The
following fact is obvious for Lie groups, by equivariance under right translations.




