Andreas Zilian

Andreas Zilian

Ordentlicher Professor

Fachgebiet(e) Civil engineering / Materials science & engineering / Mechanical engineering
Forschungsthemen Solid and Fluid Mechanics, Structural Dynamics, Fluid-Structure Interaction, Analytical and Computational Mechanics, Numerical Methods
Fakultät oder Zentrum Fakultät für Naturwissenschaften, Technologie und Kommunikation
Forschungseinheit Ingénierie
Postadresse Université du Luxembourg
Maison du Nombre
6, Avenue de la Fonte
L-4364 Esch-sur-Alzette
Büroadresse MNO, E04 0415-020
E-Mail
Telefon (+352) 46 66 44 5220
Gesprochene Sprachen English, German
Forschungsaufenthalte in Germany, France, India

Andreas Zilian

Professional Vita

  • since 2011 Professor of Engineering Sciences (Statics and Structural Analysis), University of Lxuembourg
  • 2006–2011 Assistant Professor for Fluid-Structure Interaction, Institute for Structural Analysis, Technische Universität Braunschweig, Germany
  • 02–05/2010 Research Visit at Conservatoire National des Arts et Métiers (CNAM), Paris, France
  • 2009–2011 Dean of Studies, MSc Programme Computational Sciences in Engineering (CSE), TU Braunschweig
  • 2009 Successful Teaching and Research Evaluation (habilitation equivalent)
  • 2009 Invited Research Fellow, Bourse de la Ville de Paris
  • 09–10/2005 Post-doctoral Research Visit, Structural Mechanics & Coupled Systems Lab at CNAM, Paris, France
  • 2004–2011 Executive Director of MSc Programme CSE at TU Braunschweig
  • 2005 Doktor-Ingenieur from Technische Universität Braunschweig
  • 2001–2004 PhD-Fellow of Deutsche Forschungsgemeinschaft (DFG), Research Training Group Wechselwirkung von Struktur und Fluid
  • 2001 Diplom-Ingenieur in Civil Engineering from Technische Universität Berlin

Affiliations

  • International Association for Computational Mechanics (IACM)
  • German Association for Computational Mechanics (GACM)
  • Gesellschaft für Angewandte Mathematik und Mechanik (GAMM)
  • Association Calcul des Structures et Modélisation (CSMA)

Journal Reviews

  • Acta Mechanica
  • International Journal for Numerical Methods in Engineering
  • Journal of Fluids and Structures
  • Archive of Applied Mechanics
  • International Journal for Numerical Methods in Fluids
  • Communications in Numerical Methods in Engineering

Recent Activities

  • Member of the Editorial Board of Acta Mechanica, Journal Website
  • Initiator of Luxembourg Summer School in Computational Engineering Sciences (CES), Event Website
  • Guest Editor for International Journal for Numerical Methods in Engineering, 2011, Wiley Special Issue XFEM: Extended Finite Element Methods, Special Issue
  • Organiser of Minisymposium at GACM 2011, Dresden, Germany: Structural dynamics and computational model reduction
  • Organiser of Minisymposium at ECCM 2010, Paris, France: Advanced mechanical and numerical modeling of interfaces in fluid-structure interaction
  • Session Organiser for Alexander-von-Humboldt Foundation, Potsdam, Germany: Computation in Engineering, Indo-German Frontiers of Engineering Symposium 2010
  • Conference Chairman, Initiator and Organiser of ECCOMAS Thematic Conference: Extended Finite Element Methods - XFEM 2009 at RWTH Aachen University

 Funding:

  • European Commission
  • Fonds National de la Recherche (FNR)
  • Deutsche Forschungsgemeinschaft (DFG)
  • Deutscher Akademischer Austauschdienst (DAAD)
  • Alexander-von-Humboldt Foundation (AvH)

 PhD students

  • Amalya Khurshudyan (since 07/2012)
  • Haiqin Huang (since 05/2015)
  • Srivathsan Ravi (since 02/2013)
  • Hennadiy Neutzhylov (Dr.-Ing. at TU Braunschweig, Germany, 2009; supervisor)
  • Peng Sun (Dr.-Ing. at TU Braunschweig, Germany, 2010; co-advisor)
  • Frithjof Pasenow (Dr.-Ing. at TU Braunschweig, Germany, 2013; co-advisor)
  • Sven Reinstädler (co-advisor at TU Braunschweig until 2011)
  • Simon Laue (PhD & supervisor at TU Braunschweig until 2011)
  • Henning Schippke (PhD & project supervisor at TU Braunschweig until 2013)



Last updated on: 28 Apr 2015

Mechanics of Structures

Silo Discharge

The project investigates the load-bearing behaviour of thin-walled silo structures subject to excentric discharge. This loading scenario and associated recommendation for analysis are given by the code (DIN EN 1991–4: Einwirkungen auf Silos und Flüssigkeitsbehälter). Based on a developed mechanical model including the coupled problem of thinwalled structure and bulk (granular) material and a numerical simulation method, the interaction of bulk material and silo structure in the case of a developed excentric discharge channel can be described and allows the detailed analyis and quantification of the resulting deformation-dependent pressure distribution on the silo wall. The results of these analysis recommend a refinement of the current regulations in the code.

Nano-structures

Detection of bio/chemical analytes at single molecule or atom resolution for a myriad of applications like the early diagnosis of diseases or identifying hazardous gases requires sensitive sensing devices capable of transducing molecular interactions into some physical properties. To this end, thanks to recent advances in nano-electro-mechanical systems (NEMS), a NEM-based sensor immersed in a fluidic environment for detection of ultrasmall mass is proposed. Motivated by the idea of pull-in instability in NEM switches, a robust and novel device is introduced and modelled in this project. The principle idea in the detection technique is that: The nano-resonator is electrostatically actuated by harmonic excitation from an alternating current (AC) superimposed on a load from a direct current (DC).When the oscillating nano-resonator absorbs an analyte, the eigen-frequencies of the system (nano- resonator with attached mass) change due to the change in mass distribution. By calibrating this frequency shift such that the actuation (excitation) frequency lies in the escape band after mass detection, the nano-resonator will be forced to collapse onto the ground plate (pull-in) due to ever increasing large-amplitude vibrations. Pull-in causes closure of an electric circuit (switch) indicating the presence of the substance, without the need to complicated circuitry or controllers. Based on Eringen’s nonlocal elasticity, a non-local Timoshenko beam model is developed based on size-dependent characterisation of nano-resonators immersed in a fluidic environment, accounting for the effects of multiple walls, geometric nonlinearity, the nonlinear electrostatic force, intermolecular forces and fluid-induced forces. In this project, the surrounding quiescent fluidic environment at nano-scale is modelled by a continuum approach in the limits of both a viscous incompressible fluid and a compressible inviscid fluid. The validity of the assumed simplified fluid models will be checked using molecular dynamic simulations. The critical AC excitation frequency that causes the pull-in instability in the nano-resonator with an attached substance is identified and calibrated. Also, frequency-domain analysis of nonlinear vibrations resulting from harmonic excitation (AC) of the developed nano-resonator model is studied in details. Furthermore, the effect of the surrounding fluid on the nonlinear dynamic response, especially the resonance frequency will be studied.

Materials

Constitutive Modelling of Fresh (Fibre-reinforced) Concrete

(project starts 2015)

Landslide Dynamics

Funded by: Individual Project(DFG)

Selected topographies on earth are threatened by sudden landslides on natural or artificial hillsides. The damage caused by landslides can be significant in terms of human lives and economic losses. Therefore, the assessment of landslide risks for today and future populated areas requires reliable prediction of such hazards and development of effective mathematical models in order to describe the motion of kinematic landslides. Modern numerical solution methods enable realistic simulations of the dynamic behaviour of the slide under consideration and related processes in the inner landslide material structure. The research project develops and proves a continuum-based mathematical and a finite-element-based numerical model for the analysis of landslide motion. Interaction between the landslide material and free-surface fluids as well as the basal topography is described by an interface-coupled formulation of the involved continua. The interfacial balance equations of mass and momentum are used to couple the interacting continua. Available experimental investigations are used for verification of the model.

Fluid-Structure Interaction

Active Control of Flow-induced Vibrations of Structures

The research project aims at an improved understanding on the control of flow-induced vibrations of thin and lightweight structures. Laminated piezo-polymeric materials can be applied as sensors and actuators in order to provide a controlled counter-mechanism to amplifying destructive vibrations arising from flutter or galloping phenomena. Based on an existing computational framework for fluid-structure interaction, a computationally flexible XFEM/level- set formulation and discretisation of the surface distributed piezo-polymer patches will be developed and used for analysis of the full strongly coupled multi-physics system consisting of the thin-walled structure, the surrounding transient fluid flow, the distributed piezoelectric sensors and actuators combined with a collocated/mode-based feedback control mechanism. The holistic numerical simulation allows detailed insight into the phenomena associated to piezoelectricity-based vibration control and enables identification and evaluation of the effect of nonlinear material behaviour in such a complex setting. The knowledge achieved may foster the development of prototypic devices for robust goal-oriented vibration reduction.

Compaction Behaviour of Fresh Concrete

(project starts 2015)

Energy

High-Performance Water Wheel

Funded by: Individual Project (DFG)

Intention of the research project is the development of a numerical model for systematic investigation of the coupled phenomenology of high-performance water wheels and the derivation of efficiency-enhancing constructions rules. The efficiency analysis of water wheel driven power plants is performed considering the inherent interaction of free surface flow and rotative wheel. Approved numerical methods for the solution of the coupled instationary and nonlinear model equations are basis for detailed analysis of hydraulic phenomena and sensitivities in the interaction of hydrodynamics and structural mechanics of a modern water wheel plant and enables further the optimization of geometry with respect to induced hydraulic energy loss. At first, modelling and numerical simulation of the mechanical system of a water wheel plant as coupled multi-field problem is to be realized giving rise to identification and analysis of fluid dynamics and dynamic forces onto the construction. The influence of overfall geometry, shape of blades and design of the cavity on overall effectiveness is to be investigated in sensitivity analyses. The definition of efficiency enhancing construction rules for modern water wheel technologies shall be achieved.

Energy Harvesting

Funded by: AFR-PhD (FNR Luxembourg) and FP7-PEOPLE–2012-CIG Grant(European Commission)

The project investigates a new class of piezo-electric energy harvesting devices for renewable energy resources. The key idea is to invert the traditional intention of engineers to avoid flow-induced excitation of structures such, that fluid-structure interaction can successfully be controlled and utilized in order to provide independent power supply to small-scale electrical devices. Possible application are e.g. micro electro-mechanical systems, monitoring sensors at remote locations or even in-vivo medical devices with the advantage of increased independence on local energy storage and reduced maintenance effort. This energy converter technology involves transient boundary-coupled fluid-structure interaction, volume-coupled piezo-electric-mechanics as well as a controlling electric circuit simultaneously. In order to understand the phenomenology and to increase robustness and performance of such devices, a mathematical and numerical model of the transient strongly-coupled non-linear multi-physics system will be developed and utilized for systematic computational analyses. On basis of numerical investigations of the overall system optimal designs of the flow-induced vibrating piezo-electric energy harvester are to identified with respect to electric power supply under varying exterior conditions. Vortex-induced excitations of a cantilever piezo-electric plate are exemplarily considered for studies on robustness and efficiency. The project investigates a new class of piezo-electric energy harvesting devices for renewable energy resources. The key idea is to invert the traditional intention of engineers to avoid flow-induced excitation of structures such, that fluid-structure interaction can successfully be controlled and utilized in order to provide independent power supply to small-scale electrical devices. Possible application are e.g. micro electro-mechanical systems, monitoring sensors at remote locations or even in-vivo medical devices with the advantage of increased independence on local energy storage and reduced maintenance effort. This energy converter technology involves transient boundary-coupled fluid-structure interaction, volume-coupled piezo-electric-mechanics as well as a controlling electric circuit simultaneously. In order to understand the phenomenology and to increase robustness and performance of such devices, a mathematical and numerical model of the transient strongly-coupled non-linear multi-physics system will be developed and utilized for systematic computational analyses. On basis of numerical investigations of the overall system optimal designs of the flow-induced vibrating piezo-electric energy harvester are to identified with respect to electric power supply under varying exterior conditions. Vortex-induced excitations of a cantilever piezo-electric plate are exemplarily considered for studies on robustness and efficiency.

Numerical Methods, Discretization and Solution Techniques

Space-Time Finite Elements

Enriched Finite Elements

Moving Boundary Problems

Reduced Order Modelling of Nonlinear Problems in Mechanics

High-Performce Computing for Applications in Computational Mechanics



Last updated on: 22 Apr 2015

Bachelor

Engineering Mechanics 2 (2nd semester, BING)

  • 4 ECTS
  • Content. Ebene Fachwerke, Haftung und Reibung, Seilhaftung und Seilreibung, Einführung in die Elastostatik, Beanspruchungsarten stabartiger Tragwerke, Spannungs- und Dehnungsbegriff; Grundgleichungen: Kinematik, Gleichgewicht, Materialverhalten; Zug und Druck in Stäben, zulässige Beanspruchungen bei Druck/Zug, Biegung gerader Stäbe (Timoschenko, Bernoulli), Flächenmomente, Satz von Steiner, Schiefe Biegung, zulässige Beanspruchung bei Biegung. Temperatureinwirkungen.
  • This course is on UL/FSTC Moodle (requires login)

Engineering Mechanics 3 (3rd semester, BASI)

  • 4 ECTS
  • Objectives. Die Vorlesung führt auf den Grundlagen der Elastostatik aus der Veranstaltung Technische Mechanik II den Arbeitsbegriff ein und begründet die grundlegenden Prinzipien der virtuellen Arbeit: das Prinzip der virtuellen Verschiebungen und das Prinzip der virtuellen Kräfte. Die Studierenden verstehen die eingeführten Energieprinzipe als alternative Gleichgewichts- bzw. Verträglichkeitsaussage auf Systemebene. Sie sind in der Lage, das PvV zur Schnittgrößenermittlung und das PvK zur Weggrößenermittlung einzusetzen. Die Studierenden können auf der Grundlage des Satzes von Land bzw. Maxwell-Betti die Einflusslinien für Schnittgrößen bzw. Weggrößen konstruieren und auswerten. Die Studierenden erhalten eine Einführung in die Spannungstheorie II. Ordnung und Stabilitätsprobleme (Knicken). Sie kennen das Tragverhalten von Seilen und Seilnetzen sowie das Prinzip der Vorspannung. Das Tragverhalten kontinuierlich gebetteter Bernoulli-Balken können die Studierenden beschreiben und die zugehörige Differentialgleichung systematisch aus den Grundgleichungen ableiten und lösen.
  • Content. Arbeitsbegriff und Arbeitssatz, virtuelle Arbeiten, Prinzip der virtuellen Verschiebungen (PvV), Prinzip der virtuellen Kräfte (PvK), Schnittgrößen am statisch bestimmten System mit dem PvV, Einflußlinien für Kraftgrößen, Weggrößen mit dem PvK, Berechnung von Biegelinien, Einflußlinien für Weggrößen; Theorie II. Ordnung, Stabilität, Knicken, Seiltragwerke, DGL des gebetteten Balkens.
  • This course is on UL/FSTC Moodle (requires login)

Structural Analysis 1 (2nd semester, BING)

  • 3 ECTS
  • Objectives. Die Vorlesung führt die Studierenden in die Aufgaben und Methoden der Baustatik ein, wobei der systematische (zunächst werkstoffunabhängige) Tragwerksentwurf und Tragwerksmodellierung im Vordergrund steht. Anhand der aktuellen Normung können die Studierenden unterschiedliche Einwirkungssituationen qualitativ und quantitativ bewerten und in die Analyse statischer Modelle einfließen lassen. Die Studierenden erlernen die Kenntnisse und Fertigkeiten um die Zustandlinien (Kraftgrößen und Verformungen) statisch bestimmter (ebener) Stabtragwerke sicher zu ermitteln. Die Analyse der Verschieblichkeit an solchen Systemen erfolgt mit dem Polplan.
  • Content. Aufgaben der Baustatik, Tragwerksmodelle der Stabstatik, Lastannahmen, Schnittprinzip, statische Bestimmtheit, Grundgleichungen für Stabtragwerke, Zustandslinien für statisch bestimmte Fachwerke und Rahmentragwerke, Polplan.
  • This course is on UL/FSTC Moodle (requires login)

Structural Analysis 2 (3rd semester, BING)

  • 4 ECTS
  • Objectives. Die Vorlesung führt auf den Grundlagen der Elastostatik aus der Veranstaltung Technische Mechanik II den Arbeitsbegriff ein und begründet die grundlegenden Prinzipien der virtuellen Arbeit: das Prinzip der virtuellen Verschiebungen und das Prinzip der virtuellen Kräfte. Die Studierenden verstehen die eingeführten Energieprinzipe als alternative Gleichgewichts- bzw. Verträglichkeitsaussage auf Systemebene. Sie sind in der Lage, das PvV zur Schnittgrößenermittlung und das PvK zur Weggrößenermittlung einzusetzen. Die Studierenden können auf der Grundlage des Satzes von Land bzw. Maxwell-Betti die Einflusslinien für Schnittgrößen bzw. Weggrößen konstruieren und auswerten.
  • Content. Arbeitsbegriff und Arbeitssatz, virtuelle Arbeiten, Prinzip der virtuellen Verschiebungen (PvV), Prinzip der virtuellen Kräfte (PvK), Schnittgrößen am statisch bestimmten System mit dem PvV, Einflußlinien für Kraftgrößen, Weggrößen mit dem PvK, Berechnung von Biegelinien, Einflußlinien für Weggrößen.
  • This course is on UL/FSTC Moodle (requires login)

Structural Analysis 3 (4th semester, BING)

  • 3 ECTS
  • Objectives. Die Vorlesung vermittelt die Grundlagen zur Analyse statisch unbestimmter Stabtragwerke mit baustatischen Methoden. Die Studierenden sind in der Lage, Zustandslinien für Kraftgrößen und Verformungen am ebenen und statisch unbestimmten Stabtragwerk mit dem Kraftgrößenverfahren und dem Drehwinkelverfahren sicher zu bestimmen. Sie kennen das Tragverhalten statisch unbestimmter Systeme und den Einfluss der Steifigkeitsverteilung. In Ergänzung zu den klassichen Handrechnungsmethoden erhalten die Studierenden eine Einführung in die rechnergestützte Analyse von Stabwerken.
  • Content. Wiederholung: Arbeit und Arbeitsprinzipe, Bestimmung des Grades der statischen Unbestimmtheit, Kraftgrößenverfahren: Hauptsysteme, Gleichgewichts- und Verformungsbedingungen, Zustandslinien des statisch unbestimmten Systems, Anwendungen; Verallgemeinerung des Kraftgrößenverfahrens, Weggrößenberechnung mit dem Reduktionssatz, Drehwinkelverfahren: kinematisch bestimmte Hauptsysteme, Vorgehensweise, Anwendungen; rechnergestützte Stabwerksanalyse
  • This course is on UL/FSTC Moodle (requires login)

Plastic Hinge Theory (6th semester, BASI)

  • 3 ECTS
  • Objectives. Das Traglastverfahren unter Berücksichtigung der Einflüsse aus Interaktion und Theorie II. Ordnung auf den Grenzzustand wird in dieser Veranstaltung besprochen. Kenntnisse im Traglastverfahren und in der Spannungstheorie II. Ordnung sind Grundlage für das Verständnis der aktuellen Normen im Konstruktiven Ingenieurbau.
  • Content. Einführung in das Traglastverfahren; Tragverhalten verschiedener Querschnitte: Momenten-Krümmungs-Diagramme, Dissipationsarbeit. Traglasttheoreme, plastischer Grenzzustand, kinematische Methode mit Hilfe des Prinzips der virtuellen Verschiebungen, Berechnung der Traglast von Rahmentragwerken, M-N-Q-Interaktion; Verformungsberechnungen, Fliessgelenktheorie II. Ordnung; Bemessung von Stahltragwerken; Fliesshypothesen
  • This course is onUL/FSTC Moodle (requires login)

Bachelor Theses (BING & BASI)

Final applied theses at the bachelor level are offered in the following areas:

  • Code-based design and analysis of civil engineering structures, e.g. bridges, foot bridges, multi-storey buildings, towers, halls, roof constructions
  • Analytical mechanics and applications

Please contact the team.

Master

Thin-Walled Structures (1st semester, MCE)

  • 3 ECTS
  • Objectives. The students know about the load-bearing behavior of thin-walled structures. They are familiar with the fundamental mathematical modeling of plates and shells with emphasis on boundary conditions (restraints and loading) and stress/strain concentrations. The students know the basics of available solution methods, especially finite element methods for thin-walled structures.
  • Learning Outcomes. The students will be able to select the appropriate structural model for plane and curved thin-walled structures. They can perform the structural analysis of plane and curved thin-walled structures and are able to perform a critical interpretation of the resulting stress distribution and displacements.
  • Content. Theory of plane thin-walled structures: (1) fundamental equations and membrane/bending load-bearing behaviour of plates, influence of boundary conditions, trajectory of principal stresses and dimensioning, plane strain/plane stress conditions, generalisation to spatial and rotational-symmetric load-bearing structure. (2) fundamental equations and load-bearing behaviour of thin (Kirchhoff) and medium-thick (Reissner) plates, principal moments and dimensioning, theory-dependent influence of boundary conditions. Orthotropic plates, folded plates, circular plates. Theory of curved thin-walled structures: (3) fundamental equations and load-bearing behaviour of shells of revolution, membrane theory and bending theory, extension to non-rotational-symmetric conditions. Based on the theory, the lecture complementary discusses methods of finding closed and approximate solutions to the governing equations in displacement and displacement/stress form: solution of partial differential equations, application of the principle of virtual displacements and virtual stresses to thin-walled structures, ansatz functions of full-field support and local support (finite elements). Discussion of quality and sensitivity of the solution.
  • This course is on UL/FSTC Moodle (requires login)

Structural Dynamics (2nd semester, MCE & MPE)

  • 4 ECTS
  • Objectives. The students know the theoretical foundations of discrete and continuous (longitudinal, transversal and torisional in 1D continua/structures, wave propagation in thin-walled structures) vibration problems and associated single- and multiple-degree of freedom systems. They can develop suitable models of two- and three-dimensional frame structures and know how to apply methods for the solution of the resulting system of equations of motion. The students know typical sources of structural excitation in civil and mechanical engineering and can perform first analyses based on the code (DIN).
  • Learning Outcomes. The students will be able to develop eligible structural models for selected constructions, perform the associated vibration analysis and its critical interpretation as well as to identify suitable modifications of structural designs in order to meet co-existing criteria such as safety, reliability and resource efficiency.
  • Content. Periodic and non-periodic vibration; modeling of rigid-body systems and continuous flexible structures (rods, beams, torsion, frame structures, plane structures); derivation of the set of equations of motion: synthetic and analytic method; rotational motion/constrained motion; linearisation and solution of the equation of motion; free and forced vibration of undamped and damped structures; modal analysis and modal synthesis; modal reduction. Exemplarily, the following engineering applications can be discussed in detail: (1) earthquake engineering: seismic excitation, response spectrum method, (2) wind engineering: wind and fluid flow excitations, flow-induced vibrations, (3) bridge engineering: dynamic railway excitation, (4) damping: active and passive damping devices (5) rotor dynamics, aerodynamic forces: application to wind turbines.
  • This course is on UL/FSTC Moodle (requires login)

Master Theses (MCE & MPE)

Final scientific theses at the master level are offered in the following areas:

  • Statics and dynamics of thin-walled structures
  • Approximate solution methods, e.g. finite element methods
  • Computational mechanics

Please contact the team.

Doctoral Training

Seminar on the Extended Finite Element Method (XFEM)

  • Course Objectives. Standard numerical methods like the FEM and FVM are widely established in today’s engineering practice. They are well-suited for the approximation of smooth solutions. However, in the real world, there is an infinite number of examples where field quantities do not behave smoothly but show jumps, kinks, singularities, etc. For example in solids, stresses and strains are discontinuous along material interfaces and singular at crack tips. In fluids, pressure and density change rapidly near shocks and the velocity gradient can be extremely large in boundary layers. In contrast to standard numerical methods, the XFEM enables the approximation of non-smooth solutions with optimal accuracy. This is achieved by a local enrichment of the approximation space such that the special solution properties are considered appropriately. The XFEM is in the focus of intensive research activities and is currently realised in commercial finite element software tools. This seminar is designed for graduate and doctoral students as well as developers from industry with interest in the XFEM and its wide applications. 
  • Content.
    • Basics of XFEM I: weighted residuals, enriched approximation
    • Basics of XFEM II: properties of enriched approximations
    • Implementation of XFEM: numerical integration, assembly, post-processing
    • Tutorial A: implementation in MATLAB, 1-D: diffusion problem
    • XFEM in structural mechanics I: bi-material problems, corrected XFEM
    • XFEM in structural mechanics II: cracks and crack growth
    • XFEM in structural mechanics III: finite deformation, non-linear materials
    • Tutorial B: implementation in MATLAB, 2-D: inclusions and cracks
    • XFEM in fluid mechanics: transient problems, moving fronts, two-fluid flows
    • XFEM in multi-physics: fluid-structure interaction
    • Background of XFEM: partition-of-unity method, intrinsic XFEM
  • Course Material. The course material will consist of copies of a comprehensive manuscript (lecture notes), survey papers by the lecturers, recent manuscripts and a literature overview. Moreover, the participant will have access to computer code with a MATLAB implementation of the XFEM and examples discussed in the tutorials and hands-on sections.
  • Lecturers. Thomas-Peter Fries studied at the Technical University of Braunschweig in Germany under supervision of Prof. Hermann G. Matthies. In his dissertation, he developed a coupled meshfree/meshbased method for complex fluid-structure interaction problems. Dr. Fries was a post-doctoral fellow at the Northwestern University in Chicago, USA, in the research group of Prof. Ted Belytschko. From 2006–2012, Dr. Fries was head of an independent junior research group with the title Numerical methods for discontinuities in continuum mechanics funded by the Emmy-Noether program of the German Research Association (DFG). After being in industry (division of Schlumberger) he was appointed Professor for Structural Analysis at the University of Graz (Austria) in 2013. Andreas Zilian studied Civil Engineering at the Technische Universität Berlin from which he graduated in 2001. Awarded with a scholarship by the German Research Foundation (DFG), he joined the Graduate Doctoral School “Interaction of Structure and Fluid” at the Technische Universität in Braunschweig. After completion of his PhD in 2005, Dr. Zilian became invited post-doctoral researcher at the Conservatoire National des Art et Métiers (CNAM) in Paris. The development of enriched finite element technologies for the simulation of multi-physics problems and investigation of efficient discrete descriptions of evolving discontinuities in a level-set context together with the realisation of the XFEM-concept in the framework of space-time finite elements is one of his research focuses. In 2006 he was appointed Assistant Professor at the Institute for Structural Analysis at TU Braunschweig and became Executive Director and Dean of Studies of the international Master programme Computational Sciences in Engineering. Prof. Dr. Andreas Zilian holds the chair of Statics and Structural Analysis at the University of Luxembourg since September 2011.



Last updated on: 22 Apr 2015



Last updated on: 22 Apr 2015

CES Summer School



Last updated on: 22 Apr 2015

powered by
orbilu.uni.lu

2017

Full Text
See detailMonolithic modeling and finite element analysis of piezoelectric energy harvesters
Ravi, Srivathsan; Zilian, Andreas

in Acta Mechanica (2017)

Full Text
See detailMultiphysics applications and computational challenges
Zilian, Andreas

Scientific Conference (2017, January 24)

Top of Page

2016

Full Text
See detailPrédiction de la résistance mécanique d’un bloc de maçonnerie sans joint par calcul numérique
Chewe Ngapeya, Gelen Gael; Waldmann, Danièle; Scholzen, Frank; Zilian, Andreas; Lecomte, André; KHELIL

Presentation (2016, July 06)

Full Text
See detailLarge-deformation lattice model for dry-woven fabrics including contact
Magliulo, Marco; Beex, Lars; Zilian, Andreas; Bordas, Stéphane

Speeches/Talks (2016)

Full Text
See detailNumerical Modeling of Flow-Driven Piezoelectric Energy Harvesters
Ravi, Srivathsan; Zilian, Andreas

Scientific Conference (2016, June 09)

Full Text
See detailNumerical Modeling of Flow-Driven Piezoelectric Energy Harvesting Devices
Ravi, Srivathsan; Zilian, Andreas

in Ibrahimbegovic, Adnan (Ed.) Computational Methods for Solids and Fluids (2016)

See detailStrongly-coupled modelling and analysis of energy harvesting devices
Zilian, Andreas

Scientific Conference (2016, March 11)

Full Text
See detailMonolithic Modelling and Simulation of Flow-Driven Piezo-Composite Energy Harvesters
Zilian, Andreas; Ravi, Srivathsan

Presentation (2016, February 17)

Full Text
See detailStrongly-coupled modelling and analysis of energy harvesting devices
Zilian, Andreas; Ravi, Srivathsan

in Proceedings in Applied Mathematics and Mechanics (2016), 16

Top of Page

2015

Full Text
See detailBiomechanical properties of five different currently used implants for open-wedge high tibial osteotomy
Diffo Kaze, Arnaud; Maas, Stefan; Waldmann, Danièle; Zilian, Andreas; Dueck, Klaus; Pape, Dietrich

in Journal of Experimental Orthopaedics (2015), 2(14),

Full Text
See detailComputational Modeling of FSI Energy Harvesting Devices
Ravi, Srivathsan; Zilian, Andreas

Scientific Conference (2015, June)

Full Text
See detailEnergy harvesting
Zilian, Andreas

in Science and Technology (2015), 15

See detailNumerical simulation of energy harvesting devices driven by fluid-structure interaction
Zilian, Andreas; Ravi, Srivathsan

Scientific Conference (2015, June)

Top of Page

2014

Full Text
See detailNumerical Modelling of Piezoelectric Energy Harvesting Devices Driven by Flow-Induced Vibrations
Ravi, Srivathsan; Zilian, Andreas

Scientific Conference (2014, July)

Full Text
See detailMethodenentwicklung zur numerischen Strömungsanalyse von Freispiegelströmungen bei Schaufelwasserrädern
Schippke, Henning; Seidel, Christian; Dinkler, Dieter; Zilian, Andreas

Scientific Conference (2014, March)

Full Text
See detailModelling of Fluid-Structure Interaction – Effects of Added Mass, Damping and Stiffness
Zilian, Andreas

in Irschik, Hans; Belyaev, Alexander K. (Eds.) Dynamics of Mechanical Systems with Variable Mass (2014)

Top of Page

2013

See detailA short course on The Extended Finite Element Method
Fries, Thomas-Peter; Zilian, Andreas

Book published by CES University of Luxembourg - 1 (2013)

Full Text
See detailExtended space-time finite elements for landslide dynamics
Pasenow, F.; Zilian, Andreas; Dinkler, D.

in International Journal for Numerical Methods in Engineering (2013), 93(3), 329-354

Full Text
See detailNumerical Modelling of Piezoelectric Energy Harvesting Devices
Ravi, Srivathsan; Zilian, Andreas

in 2nd ECCOMAS Young Investigators Conference (YIC 2013) (2013)

Full Text
See detailNumerical Modelling of Piezoelectric Energy Harvesting Devices
Ravi, Srivathsan; Zilian, Andreas

Scientific Conference (2013)

Full Text
See detailNumerical analysis of free-surface flow through rotating machines
Schippke, Henning; Zilian, Andreas

Presentation (2013)

Full Text
See detailMethodenentwicklung zur numerischen Strömungsanalyse von Schaufelwasserrädern
Schippke, Henning; Zilian, Andreas; Seidel, Christian; Dinkler, Dieter

in PAMM (2013)

Top of Page

2012

Full Text
See detailDesign concept for point fitting of insulation glass units
Hechler, Oliver; Tibolt, Mike; Odenbreit, Christoph; Zilian, Andreas; Dias, Vincent

in VI International Congress on Architectural Envelopes - Book (2012, June)

Full Text
See detailXFEM coupling of granular flows interacting with surrounding fluids
Pasenow, F.; Zilian, Andreas; Dinkler, D.

in ECCOMAS 2012 - European Congress on Computational Methods in Applied Sciences and Engineering, e-Book Full Papers (2012)

Full Text
See detailSpace-time shear-slip mesh update method for fluid-structure interaction problems
Schippke, Henning; Zilian, Andreas

Scientific Conference (2012, September 14)

Top of Page

2011

Full Text
See detailModellierung und numerische Simulation von Hangrutschungen
Dinkler, Dieter; Zilian, Andreas; Pasenow, Frithjof

in Busch, W; Niemeier, W; Sörgel, U (Eds.) GeoMonitoring 2011 - Ein Paradigmenwechsel zur Beherrschung von Georisiken (2011)

Full Text
See detailExtended Finite Element Method
Fries, T.-P.; Zilian, Andreas; Moës, N.

in International Journal for Numerical Methods in Engineering (2011), 86(4-5), 403

Full Text
See detailModel order reduction of the aeroelastic response of a wind turbine rotor blade
Krukow, Ian; Zilian, Andreas; Dinkler, Dieter

Scientific Conference (2011)

Full Text
See detailA rheological interface model and its space-time finite element formulation for fluid-structure interaction
Legay, A.; Zilian, Andreas; Janssen, C.

in International Journal for Numerical Methods in Engineering (2011), 86(6), 667-687

Full Text
See detailMeshfree collocation method for implicit time integration of ODEs
Netuzhylov, H.; Zilian, Andreas

in International Journal of Computational Methods (2011), 8(1), 119-137

Full Text
See detailXFEM coupling techniques for landslide-fluid interaction
Pasenow, Frithjof; Zilian, Andreas

Scientific Conference (2011)

Full Text
See detailFinite element method for strongly-coupled systems of fluid-structure interaction with application to granular flow in silos
Reinstädler, S.; Zilian, Andreas; Dinkler, D.

in Proceedings of the 4th International Conference on Computational Methods for Coupled Problems in Science and Engineering, COUPLED PROBLEMS 2011 (2011)

Full Text
See detailUntersuchung dünnwandiger Silostrukturen unter exzentrischer Entleerung
Reinstädler, Sven; Dinkler, Dieter; Zilian, Andreas

in Baustatik-Baupraxis 11 (2011)

Top of Page

2010

Top of Page

2009

Full Text
See detailOn time integration in the XFEM
Fries, T.-P.; Zilian, Andreas

in International Journal for Numerical Methods in Engineering (2009), 79(1), 69-93

Full Text
See detailSpace-time meshfree collocation method: Methodology and application to initial-boundary value problems
Netuzhylov, H.; Zilian, Andreas

in International Journal for Numerical Methods in Engineering (2009), 80(3), 355-380

Full Text
See detailSpace-Time Meshfree Collocation Method for PDEs
Netuzhylov, Hennadiy; Zilian, Andreas

in PAMM (2009), 9(1), 651--652

Full Text
See detailProjection-based reduction of fluid-structure interaction systems using monolithic space-time modes
Zilian, Andreas; Dinkler, D.; Vehre, A.

in Computer Methods in Applied Mechanics & Engineering (2009), 198(47-48), 3795-3805

Full Text
See detailA localized mixed-hybrid method for imposing interfacial constraints in the extended finite element method (XFEM)
Zilian, Andreas; Fries, T.-P.

in International Journal for Numerical Methods in Engineering (2009), 79(6), 733-752

Top of Page

2008

Full Text
See detailWeiterentwicklung eines mechanischen Modells zur Beschreibung Regen-Wind induzierter Schwingungen
Engel, Melanie; Zilian, Andreas; Dinkler, Dieter

in PAMM (2008), 8(1), 10883--10884

Full Text
See detailEnriched space-time finite elements for fluid-structure interaction
Legay, Antoine; Zilian, Andreas

in European Journal of Computational Mechanics/Revue Européenne de Mécanique Numérique (2008), 17(5-7), 725-736

Full Text
See detailNumerical model for tsunami generation by subaerial landslides
Pasenow, Frithjof; Zilian, Andreas; Dinkler, Dieter

in PAMM (2008), 8(1), 10519--10520

Full Text
See detailSimulation der aktiven Schwingungskontrolle von Fluid-Struktur Wechselwirkung durch piezoelektrische Materialien
Sun, Peng; Dinkler, Dieter; Zilian, Andreas

in PAMM (2008), 8(1), 10529--10530

Full Text
See detailThe enriched space-time finite element method (EST) for simultaneous solution of fluid-structure interaction
Zilian, Andreas; Legay, A.

in International Journal for Numerical Methods in Engineering (2008), 75(3), 305-334

Top of Page